
A parallel algorithm for solving complex multibody problems with
stream processors

Alessandro Tasora
Dept. of Mechanical Engineering

University of Parma
Parma, Italy

Email: tasora@ied.unipr.it

Dan Negrut
Dept. of Mechanical Engineering
University of Wisconsin–Madison

Madison, WI 53706
Email: negrut@wisc.edu

February 6, 2009

Abstract

This paper describes a numerical method for the parallel solution of the differential measure inclusion problem posed
by mechanical multibody systems containing bilateral and unilateral frictional constraints. The method proposed has
been implemented as a set of parallel algorithms leveragingNVIDIA’s Compute Unified Device Architecture (CUDA)
library support for multi-core stream computing. This allows the proposed solution to run on a wide variety of GeForce
and TESLA NVIDIA graphics cards for high performance computing. Although the methodology relies on the solution
of cone complementarity problems known to be fine-grained interms of data dependency, a suitable approach has
been developed to exploit parallelism with low overhead in terms of memory access and threads synchronization.
Since stream multipocessors are becoming ubiquitous as embedded components of next-generation graphic boards,
the solution proposed represents a cost-efficient way to simulate the time evolution of complex mechanical problems
with millions of parts and constraints, a task that used to require powerful supercomputers. The proposed methodology
facilitates the analysis of extremely complex systems suchas granular material flows and off-road vehicle dynamics.

Keywords: Dynamics, GP-GPU programming, friction, CUDA, multibody.

Introduction

IJCV&B - PREPRINT

The development of parallel algorithms for simulation-based science and engineering has represented one of the
most complex challenges in the field of numerical computing.Until recently the massive computational power of
parallel supercomputers has been available to a relativelysmall number of research groups in a select number of
research facilities, thus limiting the number of applications approached and the impact of high performance computing.

This scenario is rapidly changing due to a trend set by general-purpose computing on the graphics processing
unit (GPU). The libraries CUDA from NVIDIA and CTM from ATI allow one to use the streaming microprocessors
mounted in high-end graphics cards as general-purpose computing hardware1. In the last two years these micropro-
cessors evolved from basic arrays of graphics units capableof executing simple 3D shading programs on each pixel
of the frame buffer to full-featured multiprocessors used for scientific computing. Presently, the raw computational
power of these multiprocessors (such as the GT200 from NVIDIA) can reach one Teraflop, that is hundreds of times
the throughput of a modern scalar CPU. This is achieved thanks to the large array of scalar units working in parallel
and each following a Single Instruction Multiple Data (SIMD) paradigm.

GP-GPU computing has been very vigorously promoted by NVIDIA since the release of the CUDA development
platform in early 2007. CUDA [1] is an application interfacefor software development targeted to run on the G80
family of GPUs. A large number of scientific applications hasbeen developed using CUDA, most of them dealing

1Hence the name GP-GPU (General Purpose Graphical ProcessingUnit) which is often used to denote this computational paradigm.

1

with problems that are quite easily parallelizable such as molecular dynamics or signal processing. Very few GP-GPU
projects are concerned though with the dynamics of multibody systems and the two most significant are the Havok and
the Ageia physics engines. Both are commercial and proprietary libraries used in the video-game industry and their
algorithmic details are not public. Typically, these physics engines trade precision for efficiency as the priority is in
speed rather than accuracy. In this context, the goal of thiswork was to implement a general-purpose multibody solver
on GP-GPU multiprocessors backed by convergence results that guarantee the accuracy of the solution. Specifically,
a parallel version was implemented of a numerical scheme presented in [2, 3], which can robustly and efficiently
approximate the bilaterally constrained dynamics of rigidbodies undergoing frictional contacts.

The field of numerical methods for the simulation of multibody system in the presence of friction and con-
tact/impact phenomena is an area of active research. Results reported in [4] indicate that the most widely used com-
mercial software package for multibody dynamics simulation runs into significant difficulties when handling simple
problems involving hundreds of contact events, whereas cases with thousands of contacts become intractable. The
method embraced in this work can solve efficiently problems with millions of contacts on a simple scalar CPU of the
Pentium family, and improved performance can be obtained with the GP-GPU version proposed herein.

Unlike the so-called penalty or regularization methods, where the frictional interaction can be represented by a
collection of stiff springs combined with damping elementsthat act at the interface of the two bodies [5, 6, 7, 8], the
approach embraced herein relies on a different mathematical framework. Specifically, the algorithms rely on time-
stepping procedures producing weak solutions of the differential variational inequality (DVI) problem that describes
the time evolution of rigid bodies with impact, contact, friction, and bilateral constraints. When compared to penalty-
methods, the DVI approach has a greater algorithmic complexity, but avoids the small time steps that plague the former
approach.

Early numerical methods based on DVI formulations can be traced back to [9, 10, 11], while the DVI formulation
has been recently classified by differential index in [12]. Recent approaches based on time-stepping schemes have
included both acceleration-force linear complementarityproblem (LCP) approaches [13, 14, 15] and velocity-impulse
LCP-based time-stepping methods [16, 17, 18, 19]. The LCPs,obtained as a result of the introduction of inequalities
in time-stepping schemes for DVI, coupled with a polyhedralapproximation of the friction cone must be solved at
each time step in order to determine the system state configuration as well as the Lagrange multipliers representing
the reaction forces [10, 16]. If the simulation entails a large number of contacts and rigid bodies, as is the case of
part feeders, packaging machines, and granular flows, the computational burden of classical LCP solvers can become
significant. Indeed, a well-known class of numerical methods for LCPs based onsimplex methods, also known as
direct or pivotingmethods [20], may exhibit exponential worst-case complexity [21]. They may be impractical even
for problems involving as little as a few hundred bodies whenfriction is present [22, 23]. Moreover, the three-
dimensional Coulomb friction case leads to a nonlinear complementarity problem (NCP): the use of a polyhedral
approximation to transform the NCP into an LCP introduces artificial anisotropy in friction cones [16, 15, 17]. This
discrete and finite approximation of friction cones is one ofthe reasons for the large dimension of the problem that
needs to be solved in multibody dynamics with frictional contact.

In order to circumvent the limitations imposed by the use of classical LCP solvers and the limited accuracy asso-
ciated with polyhedral approximations of the friction cone, a parallel fixed-point iteration method with projection on
a convex set has been proposed, developed, and tested in [3].The method is based on a time-stepping formulation
that solves at every step a cone constrained optimization problem [24]. The time-stepping scheme has been proved
to converge in a measure differential inclusion sense to thesolution of the original continuous-time DVI. This paper
illustrates how this problem can be solved in parallel by exploiting the parallel computational resources available on
NVIDIA’s GPU cards.

Formulation of Multibody Dynamics

The formulation of the equations of motion, that is the equations that govern the time evolution of a multibody system,
is based on the so-called absolute, or Cartesian, representation of the attitude of each rigid body in the system.

The state of the system is denoted by the generalized positions q =
[
rT
1 , ǫT

1 , . . . , rT
nb

, ǫT
nb

]T ∈ R
7nb and their

time derivativesq̇ =
[
ṙT
1 , ǫ̇T

1 , . . . , ṙT
nb

, ǫ̇T
nb

]T ∈ R
7nb , wherenb is the number of bodies,rj is the absolute position

of the center of mass of thej-th body and the quaternionsǫj are used to represent rotation and to avoid singularities.
However, instead of using quaternion derivatives inq̇, it is more advantageous to work with angular velocities: the

method described will use the vector of generalized velocitiesv =
[
ṙT
1 , ω̄T

1 , . . . , ṙT
nb

, ω̄T
nb

]T ∈ R
6nb . Note that the

2

generalized velocity can be easily obtained asq̇ = L(q)v, whereL is a linear mapping that transforms eachω̄i into
the corresponding quaternion derivativeǫ̇i by means of the linear algebra formulaǫ̇i = 1

2G
T (q)ω̄i, with 3x4 matrix

G(q) as defined in [25].
Given the velocities considered, for a system ofrigid bodies the generalized mass matrixM remains constant and

diagonal. Denoting byfA (t,q,v) the set of applied, or external, generalized forces, the second order differential
equations that govern the time evolution of the multibody system expressed in matrix notation assume the formMv̇ =
fA (t,q,v).

Bilateral constraints

Bilateral constraints represent kinematic pairs, for example spherical, prismatic or revolute joints, and can be expressed
as holonomic algebraic equations constraining the relative position of two bodies. Assuming a setB of constraints is
present in the system, they lead to a collection of scalar equations:

Ψi(q, t) = 0, i ∈ B. (1)

For instance, a ball joint requires three of these scalar equations. Assuming smoothness of constraint manifold,
Ψi(q, t) can be differentiated to obtain the Jacobian∇qΨi = [∂Ψi/∂q]

T .
All bilateral constraints must also be satisfied at the velocity level. This requirement stems from the full time-

derivative of thei-th constraint equation:

dΨi(q, t)

dt
= 0 ⇒ ∂Ψi

∂q
q̇ +

∂Ψi

∂t
= ∇qΨ

T
i q̇ +

∂Ψi

∂t
= ∇qΨ

T
i L(q)v +

∂Ψi

∂t
= 0

Defining
∇ΨT

i = ∇qΨ
T
i L(q) , (2)

the constraints are consistent at velocity-level providedthe following equation is satisfied:

∇ΨT
i v +

∂Ψi

∂t
= 0 (3)

Note that the∂Ψi

∂t
is nonzero only for rheonomic constraints (motors, actuators, imposed trajectories).

Unilateral constraints

Given a large number of rigid bodies with different shapes, modern collision detection algorithms are able to find
efficiently a set of contact points, that is points where agap functionΦ(q) can be defined for each pair of near-enough
shape features. Where defined, such a gap function must satisfy the non-penetration conditionΦ(q) ≥ 0 for all contact
points.

Note that a signed distance function, differentiable at least up to some value of the interpenetration [26], can
be easily defined if bodies are smooth and convex [27]. However, this is not always possible, for instance when
dealing with concave or faceted shapes often used to represent parts of mechanical devices. In this case the gap
functionΦ(q) can be non-smooth or not well defined. Without loss of generality, for sufficiently small penetration,
the following assumption can be made on the geometrical constraints: any contact is described by a gap functionΦ(q)
that is twice continuously differentiable. Most often, when one deals with convex geometries and small numerical
integration step-sizes, this assumption is easily verified. The proposed implementation uses the robust and efficient
Gilbert-Johnson-Keerthi (GJK) algorithm [28] to find the contact points between convex shapes2.

Friction

Friction is introduced for each unilateral contact constraint present in the multibody system. When a contacti is active,
that isΦi(q) = 0, a normal force and a tangential force act on each of the two bodies at the contact point. We use the

2An efficient way to deal with concave geometries is to represent them as clusters of smaller convex shapes, performing a concave decomposition
before the simulation starts. In this way, the GJK algorithm can be used on the convex subparts, for most geometries without significant impact on
the robustness of the method.

3

classical Coulomb friction model to define these forces [17]. If the contact is not active, that isΦi(q) > 0, no friction
forces exist. This implies that the mathematical description of the model leads to a complementarity problem [16].
Given two bodies in contactA andB, let ni be the normal at the contact pointing toward the exterior of the body of
lower index, which by convention is considered to be bodyA. Let ui andwi be two vectors in the contact plane such
thatni,ui,wi ∈ R

3 are mutually orthonormal vectors.
The frictional contact force is impressed on the system by means of multiplierŝγi,n ≥ 0, γ̂i,u, andγ̂i,w, which lead

to the normal component of the forceFi,N = γ̂i,nni and the tangential component of the forceFi,T = γ̂i,uui+γ̂i,wwi.
The Coulomb model imposes the following nonlinear constraints:

γ̂i,n ≥ 0, Φi(q) ≥ 0, Φi(q)γ̂i,n = 0,

µiγ̂i,n ≥
√

γ̂2
i,u + γ̂2

i,w , ||vi,T ||
(
µiγ̂i,n −

√
γ̂2

i,u + γ̂2
i,w

)
= 0,

〈Fi,T ,vi,T 〉 = −||Fi,T || ||vi,T ||

wherevi,T is the relative tangential velocity at contacti. Defining by〈 , 〉 the inner product of two vectors, the
constraint〈Fi,T ,vi,T 〉 = −||Fi,T || ||vi,T || requires that the tangential force be opposite to the tangential velocity.
Note that the friction force depends on the friction coefficientµi ∈ R

+. The original Coulomb model distinguishes
between staticµs and kineticµk friction coefficients. For simplicity, in this paper an assumption is made that these
coefficients are the same. If needed, it is possible to extendthe method to make this distinction or also consider more
complex constitutive equations such as the Stribeck friction model [29].

The first part of the constraint can be restated as

Fi = Fi,N + Fi,T = γ̂i,nni + γ̂i,uui + γ̂i,wwi ∈ Υ, (4)

whereΥ is a cone in three dimensions, whose slope istan−1 µi. This results in the friction force being dissipative.
An equivalent convenient way of expressing this constraintis by using the maximum dissipation principle:

(γ̂i,u, γ̂i,w) = argmin√
γ̂2

i,u
+γ̂2

i,w
≤µiγ̂i,n

vT
i,T (γ̂i,uui + γ̂i,wwi) . (5)

In fact, the the first-order necessary Karush-Kuhn-Tucker conditions [30] for the minimization problem (5) correspond
to the Coulomb model above [31, 11].

The overall model

We assume that at timet several bodies are touching, interpenetrating or separated by a distance smaller than a
thresholdδ > 0, so that a setA of relevant contact constraints can be assembled:

A(q, δ) = {i | i ∈ {1, 2, . . . , p} , Φi(q) ≤ δ } ,

Shapes which are separated by larger distances than theδ threshold are not considered for frictional contact analysis
to avoid a wasting of computational resources.

It is also assumed that there is a set of active bilateral constraintsB, acting on the rigid bodies. Each constraint
i ∈ B transmits reactions to the connected bodies by means of a multiplier γ̂i,b.

Considering the effects of bothA(q, δ) frictional contacts andB bilateral constraints, the time evolution of the
dynamical system is governed by the following differentialproblem with set-valued functions and complementarity
constraints, which is equivalent to a diferential variational inequality [32]:

q̇ = L(q)v
Mv̇ = f (t,q,v) +

∑
i∈A(q,δ)

(γ̂i,n Di,n + γ̂i,u Di,u + γ̂i,w Di,w) +
∑
i∈B

γ̂i,b∇Ψi

i ∈ B : Ψi(q, t) = 0
i ∈ A(q, δ) : γ̂i,n ≥ 0 ⊥ Φi(q) ≥ 0, and
(γ̂i,u, γ̂i,w) = argmin

µiγ̂i,n≥
√

(γ̂i,u)2+(γ̂i,w)2

vT (γ̂i,u Di,u + γ̂i,w Di,w)

(6)

The tangent space generatorsDi = [Di,n, Di,u, Di,w] ∈ R
6nb×3 are defined as

DT
i =

[
0 . . . −AT

i,p AT
i,pAA˜̄si,A 0 . . . 0 AT

i,p −AT
i,pAB˜̄si,B . . . 0

]
, (7)

4

Body

A
Body

B

0
x

y

z

ni

ui

wi

rB

rA

si,A

i-th contact

si,B

x

y

z

x y

z

Figure 1: Contacti between two bodiesA,B ∈ {1, 2, . . . , nb}

where we useAi,p = [ni,ui,wi] as theR
3×3 matrix of the local coordinates of theith contact, and introduce

the vectors̄si,A and s̄i,B for representing the contact point positions in body-relative coordinates, as illustrated in
Figure (1).

The Coulomb model used in this work is the predominant model used in the engineering literature to describe dry
friction. Unfortunately, the model may be inconsistent: there exist configurations for which the resulting problem does
not have a solution [13, 19]. This situation has led to the need to explore weaker formulations where the forces are
measures and Newton’s law is satisfied in a measure differential inclusion sense [19]. It has been shown that solutions
in that sense do exist and can be found by time-stepping schemes [33].

Time-stepping scheme

We formulate the dynamical problem in terms of measure differential inclusions [19], whose numerical solution can
be obtained using the following time-stepping scheme basedon the solution of a complementarity problem at each
time step.

Given a positionq(l) and velocityv(l) at the time-stept(l), the numerical solution is found at the new time-step
t(l+1) = t(l) + h by solving the following optimization problem with equilibrium constraints [2]:

M(v(l+1) − v(l)) = hf(t(l),q(l),v(l)) +
∑

i∈A(q(l),δ)

(γi,n Di,n + γi,u Di,u + γi,w Di,w) +
∑

i∈B

γi,b∇Ψi, (8)

i ∈ B :
1

h
Ψi(q

(l), t) + ∇ΨT
i v(l+1) +

∂Ψi

∂t
= 0 (9)

i ∈ A(q(l), δ) : 0 ≤ 1

h
Φi(q

(l)) + DT
i,nv(l+1) ⊥ γi

n ≥ 0, and (10)

(γi,u, γi,w) = argmin
µiγi,n≥

√
γ2

i,u
+γ2

i,w

vT (γi,u Di,u + γi,w Di,w) , (11)

q(l+1) = q(l) + hL(q(l))v(l+1). (12)

Here,γs represents the constraint impulse of a contact constraint,that is,γs = hγ̂s, for s = n, u,w. The 1
h
Φi(q

(l))

term achieves constraint stabilization, and its effect is discussed in [34]. Similarly, the term1
h
Φi(q

(l)) achieves

5

stabilization for bilateral constraints. The scheme converges to the solution of a measure differential inclusion [24]
when the step sizeh → 0.

Several approaches can be used to solve (8)-(11). Some authors suggested to approximate friction cones as faceted
pyramids, so that the system of equations above, originallya Nonlinear Complementarity Problem (NCP), turns into a
Linear Complementarity Problems (LCP) [17]. The resultingLCPs are solved using algorithms based on the so-called
pivoting methods or simplex methods. These numerical approaches that belong to the class of direct methods are
computationally expensive, and their complexity class is in the worst case exponential [22].

Alternatively, the problem is cast as a monotone optimization problem by introducing a relaxation over the com-
plementarity constraints. Specifically, the time-stepping scheme is modified by replacing Eq. (10) with

i ∈ A(q(l), δ) : 0 ≤ 1

h
Φi(q

(l)) + DT
i,nv(l+1) − µi

√
(vT Di,u)2 + (vT Di,w)2 ⊥ γi

n ≥ 0 . (13)

Nonetheless, ash → 0 the solution of the modified time-stepping scheme will approach the solution of the same
measure differential inclusion as the original scheme [24].

It has been shown [3] that the modified scheme is a Cone Complementarity Problem (CCP), which can be solved
efficiently by a family of iterative numerical methods that rely on projected contractive maps. One such algorithm is
discussed below; it fits well into a parallel computing paradigm since it requires little data interdependency, similarly
to a projected-Jacobi fixed-point method. Omitting for brevity some of the details discussed in [3], the algorithm
makes use of the following vectors:

k̃ ≡ Mv(l) + hf(t(l),q(l),v(l)) (14)

bi ≡
{

1

h
Φi(q

(l)), 0, 0

}T

i ∈ A(q(l), δ), (15)

bi ≡ 1

h
Ψi(q

(l), t) +
∂Ψi

∂t
, i ∈ B (16)

The solution, in terms of dual variables of the CCP (the multipliers), is obtained by iterating the following steps
until convergence:

∀i ∈ A(q(l), δ) :

δr+1
i = γr

i − ωηi

DT
i M−1

∑

z∈A(q(l),δ)

Dzγ
r
z +

∑

z∈B

∇Ψzγ
r
z + k̃

 + bi

 (17)

γr+1
i = λΠΥi

(
δr+1
i

)
+ (1 − λ)γr

i . (18)

∀i ∈ B :

δr+1
i = γr

i − ωηi

∇ΨT
i M−1

∑

z∈A(q(l),δ)

Dzγ
r
z +

∑

z∈B

∇Ψzγ
r
z + k̃

 + bi

 (19)

γr+1
i = λδr+1

i + (1 − λ)γr
i . (20)

The iterative process uses the projection operatorΠΥi
(·) [2], which is a non-expansive mapΠΥi

: R
3 → R

3 acting
on the triplet of multipliers associated with thei-th contact. Thus, if the multipliers fall into the frictioncone, they are
not modified; if they are in the polar cone, they are set to zero; in the remaining cases they are projected orthogonally
onto the surface of the friction cone.

The overrelaxation factorω and theλ andη parameters are adjusted to control the convergence. Good default
values forη areηi = 3/Trace(DT

i M−1Di) for i ∈ A(q(l), δ), andηi = 1/(∇ΦT
i M−1∇Φi) for i ∈ B. When dealing

exclusively with bilateral constraints these choices leadto the classical Jacobi fixed-point method. In regards toω and
λ, extensive numerical experiments suggest that choosingω = 0.3 andλ = 1 typically leads to good convergence
speed. The interested reader is referred to [3] for a proof ofthe convergence of this method.

Note that using Eqs.(8) and (14), one can rewrite the iteration in a more compact form:

∀i ∈ A(q(l), δ) : γr+1
i = λΠΥi

[
γr

i − ωηi

(
DT

i vr + bi

)]
+ (1 − λ)γr

i (21)

∀i ∈ B : γr+1
i = λ

[
γr

i − ωηi

(
∇ΨT

i vr + bi

)]
+ (1 − λ)γr

i (22)

6

In this case, at each iteration, before repeating (21) and (22), velocitiesv(l+1) are updated as

vr+1 = M−1

∑

z∈A(q(l),δ)

Dzγ
r+1
z +

∑

z∈B

∇Ψzγ
r+1
z + k̃

 (23)

Note that the superscript(l + 1) was omitted for brevity.
Good accuracy in the CCP solution is typically obtained after less than one hundred iterations. Note that iterating

through (21), (22) and (23), also yields the primal variables (the velocities) at the end of the procedure with no
additional effort.

The following pseudocode of Algorithm 1 shows how the iteration is implemented on a serial computing architec-
ture:

Algorithm 1: Inner Iteration Loop

1. Fori ∈ A(q, δ), evaluateηi = 3/Trace(DT
i M−1 Di).

2. Fori ∈ B, evaluateηi = 1/(∇ΦT
i M−1∇Φi).

3. Warm start: if some initial guessγ∗ is available for multipliers, then setγ0 = γ∗, otherwiseγ0 = 0.

4. Initialize velocities:v0 =
∑

i∈A M−1 Diγ
0
i +

∑
i∈B M−1∇Φiγi,b

0 + M−1k̃ .

5. Fori ∈ A(q(l), δ), compute changes in multipliers for contact constraints:
γr+1

i = λ ΠΥi

(
γr

i − ωηi

(
DT

i vr + bi

))
+ (1 − λ)γr

i ;
∆γr+1

i = γr+1
i − γr

i ;
∆vi = M−1 Di∆γr+1

i .

6. Fori ∈ B, compute changes in multipliers for bilateral constraints:
γr+1

i = λ
(
γr

i − ωηi

(
∇ΨT

i vr + bi

))
+ (1 − λ)γr

i ;
∆ γr+1

i = γr+1
i − γr

i ;
∆vi = M−1∇Ψi∆γr+1

i .

7. Apply updates to the velocity vector:
vr+1 = vr +

∑
i∈A ∆vi +

∑
i∈B ∆vi

8. r := r + 1. Repeat from 5 until convergence, or untilr > rmax.

The stopping criterion is based on the value of the velocity update. The overall algorithm that provides an approx-
imation to the solution of Eqs. (8) through (12) relies on Algorithm 1 and requires the following steps:

Algorithm 2: Outer, Time-Stepping, Loop

1. Sett = 0, step counterl = 0, provide initial values forq(l) andv(l).

2. Perform collision detection between bodies, obtainingnA possible contact points within a distanceδ. For each
contacti, computeDi,n, Di,u, Di,w; for each bilateral constraint compute the residualΦi(q), which also
providesbi.

3. For each body, compute forcesf(t(l),q(l),v(l)).

4. Use Algorithm 1 to solve the cone complementarity problemand obtain unknown impulseγ and velocityv(l+1).

5. Update positions usingq(l+1) = q(l) + hL(q(l))v(l+1).

6. Incrementt := t + h, l := l + 1, and repeat from step 2 untilt > tend

These two algorithms have been implemented on serial computing architectures and proved to be reliable and
efficient. In the following the time-consuming part of the methodology, that is the CCP iteration of Algorithm 1, will
be reformulated to take advantage of the parallel computingresources available on commodity GPUs.

7

Parallel computation on the GPU

Currently, high-end GPUs offer floating-point parallel computing power close to one Teraflop, thus exceeding those
of multi-core CPUs. This computational resource, usually devoted to the execution of pixel shading fragments for the
rendering of OpenGL or DirectX three dimensional visualization, can be also exploited for scientific computation.

Earlier experiments with scientific computing on the GPU required an intricate programming technique because
GPU hardware and software was meant for real-time graphicalvisualization only. The developer had to use OpenGL
calls to reformulate small scientific computation programsin the GLSL shading language native to the graphics board.
These programs were executed with data organized in rectangular textures, with RGBA color representing some sci-
entific data. In this way, the output was rendered in parallel, pixel by pixel, by the pixel-shading processors3 into a
frame buffer which was never visualized on the screen; the RGBA colors of that frame buffer would in fact represent
the output of the parallel scientific computation.

To alleviate the difficulty of this programming model NVIDIArecently proposed a development environment,
called CUDA [1], which allows general-purpose programmingon the GPU. Basically, the programmer can write
algorithms using a subset of the C++ language, which can be compiled into machine code and executed on the GPU
device. The GPU executes the samekernelon each parallel thread which in turn operates over data structures called
streams, hence the namestreaming processor. This computational architecture is called SIMT, Single Instruction
Multiple Thread, and it can be considered an advanced form ofSIMD Single Instruction Multiple Data architecture
according to the Flynn taxonomy [35]. To efficiently executehundreds of threads in parallel, GPU multiprocessors are
hardware multithreaded: they can manage thousands of concurrent threads with almost zero scheduling overhead, so
that hardware switching between threads is used effectively to hide the latency to memory access operations.

We implemented our code on graphics board of the 9800 GX2 family, from NVIDIA. Each board features two
GPU processors, for a total of 256 streaming processors and capable of running 24,576 live threads. The processed
data resides in the 2GB of DDR3 device memory. The basic idea is that, at each simulation step, the CPU uploads data
into the GPU memory, launches akernelto be performed simultaneously on many parallel GPU threads, and gathers
the results of the computations by downloading select portions of the GPU memory back into the host RAM. Out of
the entire computational time, the time slice spent on the CPU should be as small as possible to exploit the scalable
nature of the GPU parallelism.

For the problem at hand, not all of the multibody simulation has been ported on the GPU. In particular, this is the
case of the collision detection engine, which is still executed on the CPU and becomes the bottleneck of the entire
simulation. Nonetheless, the proposed algorithm fits well into the GPU multithreaded model because the computation
can be split in multiple threads each acting on a single contact or kinematic constraint.

Buffers for data structures

In the proposed approach, the data structures on the GPU are implemented as large arrays (buffers) to match the
execution model associated with NVIDIA’s CUDA. Specifically, threads are grouped in rectangular thread blocks, and
thread blocks are arranged in rectangular grids. Four main buffers are used: the contacts buffer, the constraints buffer,
the reduction buffer, and the bodies buffer.

When designing the data structures of these buffers, specialcare should be paid to minimize the memory overhead
caused by repeated transfers of large data structures. Moreover, data structures should be organized to exploit fast
GPU coalesced memory access to fetch data for all parallel threads in a warp, which is a set of 32 threads all running
simultaneously in parallel. Provided that bytes are contiguous and that thekth thread accesses thekth element in the
data structure, up to 512 bytes can be fetched in one operation by a warp of threads. Failing to perform coalesced
memory access may slow the kernel significantly.

Numerical experiments show that for high memory throughput, it is better to pad the data into a four-float width
structure even at the cost of wasting memory space when several entries end up not being used. Also, the variables
in the data structures are organized in a way that minimizes the number of fetch and store operations. This approach
maximizes the arithmetic intensity of the kernel code, as recommended by the CUDA development guidelines.

In the actual implementation of the method, the data structure for the contacts has been mapped into columns of
four floats as shown in Fig. 2. Each contact will reference itstwo touching bodies through the two pointersBA and

3Earlier models of GPU implemented two kinds of parallel execution units, the pixel processors and the vertex processors; the former were more
easily adapted to scientific computing. Modern GPUs, instead, implement a single type of execution units (calledstreaming processorsor thread
processors) which can be used for pixel shading, vertex processing, as well as for generic scientific computation.

8

BB , in the fourth and seventh rows of the contact data structure.
There is no need to store the entireDi matrix for theith contact because it has zero entries for most of its part,

except for the two 12x3 blocks corresponding to the coordinates of the two bodies in contact. In fact, once the
velocities of the two bodieṡrAi

, ωAi
, ṙBi

andωBi
have been fetched, the productDT

i vr in step 5 of Algorithm 1 can
be performed as

DT
i vr = DT

i,vA
ṙAi

+ DT
i,ωA

ωAi
+ DT

i,vB
ṙBi

+ DT
i,ωB

ωBi
(24)

with the adoption of the following 3x3 matrices

DT
i,vA

= −AT
i,p (25a)

DT
i,ωA

= AT
i,pAA˜̄si,A (25b)

DT
i,vB

= AT
i,p (25c)

DT
i,ωB

= −AT
i,pAB˜̄si,B (25d)

SinceDT
i,vA

= −DT
i,vB

, there is no need to store both matrices, so in each contact data structure only a matrixDT
i,vAB

is stored, which is then used with opposite signs for each of the two bodies.
Also the velocity update vector∆vi, needed for the sum in step 7 of Algorithm 1, is sparse: it can be decomposed

in small subvectors. Specifically, given the masses and the inertia tensors of the two bodiesmAi
, mBi

, JAi
andJBi

,
the term∆vi will be computed and stored in four parts as follows:

∆ṙAi
= m−1

Ai
Di,vA

∆γr+1
i (26a)

∆ωAi
= J−1

Ai
Di,ωA

∆γr+1
i (26b)

∆ṙBi
= m−1

Bi
Di,vB

∆γr+1
i (26c)

∆ωBi
= J−1

Bi
Di,ωB

∆γr+1
i (26d)

Note that those four parts of the∆vi terms are not stored in thei-th contact data structure or in the data structure of
the two referenced bodies (because multiple contacts may refer the same body, hence they would overwrite the same
memory position). These velocity updates are instead stored in a reduction buffer, which will be used to efficiently
perform the summation in step 7 of Algorithm 1. This will be discussed shortly.

The constraints buffer, shown in Fig. 3, is based on a similarconcept. Jacobians∇Ψi of all scalar constraints are
stored in a sparse format, each corresponding to four rows∇Ψi,vA

, ∇Ψi,ωA
, ∇Ψi,vB

, ∇Ψi,ωB
. Therefore the product

∇ΨT
i vr in step 6 of Algorithm 1 can be performed as the scalar value

∇ΨT
i vr = ∇ΨT

i,vA
ṙAi

+ ∇ΨT
i,ωA

ωAi
+ ∇ΨT

i,vB
ṙBi

+ ∇ΨT
i,ωB

ωBi
(27)

Also, the four parts of the sparse vector∆vi can be computed and stored as

∆ṙAi
= m−1

Ai
∇Ψi,vA

∆γr+1
i (28a)

∆ωAi
= J−1

Ai
∇Ψi,ωA

∆γr+1
i (28b)

∆ṙBi
= m−1

Bi
∇Ψi,vB

∆γr+1
i (28c)

∆ωBi
= J−1

Bi
∇Ψi,ωB

∆γr+1
i (28d)

About the bodies buffer, Fig. 4 shows that each body is represented by a data structure containing the state (velocity
and position), the mass moments of inertia and mass values, and the external applied forceFj and torqueCj . Forces
and torques, if any, are used to compute the third step of Algorithm 1. Note that to speed the iteration, it is advantageous
to store the inverse of the mass and inertias rather than their original values, because the operationM−1 Di∆γr+1

i

must be performed multiple times.
A software design decision that improved the overall performance regarded the delegation of contact preprocessing

step to the GPU. Specifically, instead of computing the data structures of the contacts on the host, only the contact
normals and contact points were copied into the GPU memory. Then, a GPU kernel computedDT

i,vA
, DT

i,ωA
, DT

i,ωB
,

9

Thread

 Thread block … Thread block

 Thread grid

 GPU contacts buffer i-th contact data

bi,n

bi,u

bi,v

Bi,A

Bi,B

ηi

γγγγi,n γγγγ i,u γγγγ i,v µi

DT
 i,vA,B

DT
 i,ωA

1

2

3

4

5

6

7

8

9

10

float4

DT
 i,ωB

Ri,A Ri,B ni,A ni,B 11

Figure 2: Grid of data structures for frictional contacts, in GPU memory.

Thread
 Thread block … Thread block

 Thread grid

 GPU constraints buffer

 j-th constraint data

 i,vA
 ∇ΨΨΨΨT

 i,vB
 ∇ΨΨΨΨT

Bi,A

 Bi,B

 i,ωA
 ∇ΨΨΨΨT

 i,ωB
 ∇ΨΨΨΨT

 ηηηηi γγγγi bi

1

2

3

4

5

float4

6 Ri,A Ri,B ni,A ni,B

Figure 3: Grid of data structures for scalar constraints, inGPU memory.

ηi, bi,n, as shown in Figure 5. This strategy leads to faster code not only because the preprocessing kernel runs in
parallel on the GPU, but also because it avoids the memory overhead incurred when copying the full contact structures
from host to the GPU. Finally, it should be pointed out thatbi,v andbi,w are always zero, and that the data structures
for both bodies and contacts on the GPU are processed in thread blocks and the thread blocks are organized in block
grids.

The Parallel Algorithm

A parallel version of an algorithm must respect the Lamport consistency model, that is the parallel execution must
produce the same results as the sequential program, regardless of the number of threads [36].

Data dependency poses a constraint on the possibility of a straightforward parallelizations of algorithms. In fact,
denotingIi andOi the sets of input and output variables of thei-th program fragment, Bernstein’s conditions state
that two fragmentsi, j can be executed in parallel only if the following three conditions are satisfied:Ii ∩ Oj = ∅,
Oi ∩ Ij = ∅ andIi ∩ Oj = ∅. If all these conditions are satisfied, the program requiresno synchronization of
memory and it belongs to the so calledembarassingly-parallelclass, the type of parallel execution most suitable for

10

Thread
 Thread block … Thread block

 Thread grid

 GPU bodies buffer

 j-th body data

1

2

3

4

5

6

7

float4

vj,x vj,y

vj,z

ω j,x ω j,y ω j,z
x j,x x j,y x j,z
ρj,0 ρj,1 ρj,2 ρj,3

Jj,x Jj,y

Jj,x

mj

Fj,x Fj,y Fj,z
Cj,x Cj,y Cj,z

 -1 -1 -1 -1

Rj

Figure 4: Grid of data structures for rigid bodies, in GPU memory.

Bi,A

Bi,B

γγγγi,n γγγγ i,u γγγγ i,v µi

ni,A

s i,A

s i,B

Ri,A Ri,B ni,A ni,B

1

2

3

4

5

6

7

8

9

10

11

bi,n

bi,u

bi,v

Bi,A

Bi,B

ηi

γγγγi,n γγγγ i,u γγγγ i,v µi

DT
 i,vA,B

DT
 i,ωA

1

2

3

4

5

6

7

8

9

10

DT
 i,ωB

Ri,A Ri,B ni,A ni,B 11

Figure 5: Contact data structure, before (left) and after (right) the preprocessing kernel.

11

 GPU reduction buffer

 ∆∆∆∆ωωωω

0

∆∆∆∆v

 ∆∆∆∆ωωωω

1

∆∆∆∆v

 ∆∆∆∆ωωωω

0

∆∆∆∆v

 ∆∆∆∆ωωωω

0

∆∆∆∆v

float4

vj,x vj,y

vj,z

ω j,x ω j,y ω j,z
x j,x x j,y x j,z
ρj,0 ρj,1 ρj,2 ρj,3

Jj,x Jj,y

Jj,x

mj

Fj,x Fj,y Fj,z
Cj,x Cj,y Cj,z

 -1 -1 -1 -1

0

vj,x vj,y

vj,z

ω j,x ω j,y ω j,z
x j,x x j,y x j,z
ρj,0 ρj,1 ρj,2 ρj,3

Jj,x Jj,y

Jj,x

mj

Fj,x Fj,y Fj,z
Cj,x Cj,y Cj,z

 -1 -1 -1 -1

2

vj,x vj,y

vj,z

ω j,x ω j,y ω j,z
x j,x x j,y x j,z
ρj,0 ρj,1 ρj,2 ρj,3

Jj,x Jj,y

Jj,x

mj

Fj,x Fj,y Fj,z
Cj,x Cj,y Cj,z

 -1 -1 -1 -1

3

Body 0

Body 1

Body 2

Constraint

K
er

ne
l:

C

C
P

 im
pu

ls
e

K
er

ne
l:

re

du
ct

io
n

K
er

ne
l:

sp

e
e

d
up

da
te

0

1

2

3

. . .

 i,vA
 ∇ΨΨΨΨT

 i,vB
 ∇ΨΨΨΨT

0

 1

 i,ωA
 ∇ΨΨΨΨT

 i,ωB
 ∇ΨΨΨΨT

 ηηηηi γγγγi bi

0 2 0 0

Constraint

 i,vA
 ∇ΨΨΨΨT

 i,vB
 ∇ΨΨΨΨT

0

 2

 i,ωA
 ∇ΨΨΨΨT

 i,ωB
 ∇ΨΨΨΨT

 ηηηηi γγγγi bi

1 3 1 0

. . .

Figure 6: The reduction buffer avoids race conditions in parallel updates of the same body state. In this example, the
first constraint refer to bodies 0 and 1, the second to bodies 0and 2. Multiple updates to body 0 are then buffered and
accumulated with a reduction kernel.

GPU computing.
One can see that a parallelization of this class can be easilyimplemented for computations in steps 5 and 6 of

Algorithm 1, by simply assigning one contact per thread (and, similarly, one constraint per thread). In fact the results
of these computations would not overlap in memory, and it will never happen that two parallel threads need to write
in the same memory location at the same time. These are the twomost numerically-intensive steps of the CCP solver,
called theCCP contact iteration kernel and theCCP constraint iteration kernel.

However, the sums in step 7 of Algorithm 1 cannot be performedwith embarrassingly-parallel implementations:
for example, it may happen that two or more contacts need to add their velocity updates to the same rigid body. A
possible approach to overcome this problem is presented in [37], for a similar problem. We developed an alternative
method, which we call parallel Reduction of Multiple Variable-Length Arrays (RMVLA). It uses a reduction buffer as
illustrated in Fig.6.

Summation of array values into a single memory destination,called data reduction, is a problem which can be
performed in parallel only at the cost of some fine-grained data synchronization [38]. Recent research on GPU parallel
architectures proposed hierarchical algorithms as a way toperform data reduction [39, 40]. The basic idea is depicted
in Fig.7: the summation is performed as a sequence of in-place parallel binary sums with exponentially-increasing
strides. In this way, at least for large data, a large number of threads are kept busy.

We extended the parallel reduction concept to cope with the problem of step 7 of Algorithm 1. Specifically,
we assume that all contact threads store their results (the∆vi and∆ωi vectors) into non-overlapping slots of an
auxiliary array, called reduction buffer. To this end, contact data will contain pointersRi,A andRi,B which refer to the
destination slots in the reduction buffer. Also, slots referring to velocity updates of the same body must be contiguous,
so that the reduction buffer contains sub-sequences of velocity updates (we call them

∑
-sequences) as if they were

sorted on the basis of the body they were applied to. It must bepointed out that no actual sorting is performed on
GPU: it is sufficient that theRi,A andRi,B indexes of the constraints are previously prepared by the CPU with a
simple bookkeeping algorithm to achieve this sorted ordering.

Since the reduction buffer contains sequences of updates and each
∑

-sequence must be summed to accumulate
the effects into single∆v and∆ω for the referenced body, a hierarchical binary-tree reduction has been used on each∑

-sequence as illustrated in Fig.8. While some
∑

-sequences may be long, other may be short4, and it would be
undesirable to start a single binary reduction for each

∑
-sequence. Instead, they are processed at once by distributing

threads to all the reduction buffer slots. If some binary summation finishes earlier than others, the hardware thread

4As an example of an odd configuration, which can be still solvedefficiently with our implementation, think about simulating a large block
placed on one thousand of spheres: this will create a single

∑
-sequence of 1000 updates to the same body, and one thousand ofsmall

∑
-sequences

of single updates, for the 1000 spheres.

12

Σ result

S
te

p
1

su
m

m
a

tio
ns

S
te

p
2

su
m

m
a

tio
ns

S
te

p
3

Su
m

m
a

tio
n

V
a

lu
es

 t
o

 s
u

m

+

+

+

+

+

+

+

Figure 7: The concept which inspires the reduction algorithm. Sums are performed with a binary tree, to exploit the
parallel nature of the stream processors.

 ∆∆∆∆ωωωω

0

∆∆∆∆v

 ∆∆∆∆ωωωω

1

∆∆∆∆v

 ∆∆∆∆ωωωω

2

∆∆∆∆v

 ∆∆∆∆ωωωω

3

∆∆∆∆v

 ∆∆∆∆ωωωω

0

∆∆∆∆v

 ∆∆∆∆ωωωω

0

∆∆∆∆v

 ∆∆∆∆ωωωω

1

∆∆∆∆v

 ∆∆∆∆ωωωω

2

∆∆∆∆v

 ∆∆∆∆ωωωω

0

∆∆∆∆v

 ∆∆∆∆ωωωω

0

∆∆∆∆v

 ∆∆∆∆ωωωω

0

∆∆∆∆v

 ∆∆∆∆ωωωω

2

∆∆∆∆v

 ∆∆∆∆ωωωω

0

∆∆∆∆v

 ∆∆∆∆ωωωω

0

∆∆∆∆v

 ∆∆∆∆ωωωω

0

∆∆∆∆v

 ∆∆∆∆ωωωω

0

∆∆∆∆v

 ∆∆∆∆ωωωω

2

∆∆∆∆v

 ∆∆∆∆ωωωω

0

∆∆∆∆v

+

+

+

 ∆∆∆∆ωωωω

0

∆∆∆∆v

 ∆∆∆∆ωωωω

0

∆∆∆∆v

 ∆∆∆∆ωωωω

0

∆∆∆∆v

 ∆∆∆∆ωωωω

0

∆∆∆∆v

 ∆∆∆∆ωωωω

0

∆∆∆∆v

 ∆∆∆∆ωωωω

0

∆∆∆∆v

 ∆∆∆∆ωωωω

0

∆∆∆∆v

 ∆∆∆∆ωωωω

0

∆∆∆∆v

 ∆∆∆∆ωωωω

0

∆∆∆∆v

+

+

Reduction kernel
step 1

B
od

y
1

up
da

tes

B
od

y
2

up
da

tes

B
od

y
3

up
da

tes

B
od

y
4

up
da

tes

Σ updates of body 1

Σ updates of body 2

Σ updates of body 3

Σ updates of body 4

Reduction kernel
step 2

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Figure 8: Example of our RMVLA reduction algorithm applied to the reduction buffer. After multiple passes, reduction
happens in-place, on multiple

∑
-sequences of variable length.

13

scheduler will automatically keep the streaming processors busy by applying them to uncomplete threads. In this way,
except for occasional divergence in thread warps, multiprocessor occupancy is maximized. The RMVLA algorithm
requires for each slot to contain an auxiliary index that increases in each

∑
-sequence. It starts from 0 in all first

slots of the
∑

-sequence and it is used to compute the stride for the in-place summation. These indexes can be
precomputed easily by the CPU. Note that, given its hierarchical nature, the RMVLA algorithm must be iterated at
leastnR = log2(nm) times before completing the reduction, wherenm is the length of the largest

∑
-sequence (in

most simulation we performed,nR rarely exceeds 3).
The pseudocode in Algorithm 3 outlines how Algorithm 1 and Algorithm 2 can be combined and turned into a

sequence of computational phases, for the most part executed as parallel kernels on the GPU. In terms of resource allo-
cation, the computation kernels followed a one-thread-per-body, one-thread-per-contact, or one-thread-per-constraint
approach, depending on the phase of the algorithm.

Algorithm 3: Complete Time Stepping, when GPU is Available.

1. (Host, serial) Perform collision detection between bodies, obtainingnA possible contact points within a distance
δ, as contact positionssi,A, si,B on the two touching surfaces, and normalsni. If warm start is used, then fetch
last reactions in contact pointγ∗

i (obtained in previous frame, if the contact is persistent) and setγi = γ∗
i ;

otherwise setγi = 0.

2. (Host, serial) Copy contact and body data structures from host memory to GPU buffers. Copy also constraint
data (residualsbi and jacobians) into the constraint buffer. Note: also compute and storeRi,A, Ri,B , ni,A and
ni,B in contact and constraint structures.

3. (GPU, body-parallel) Force kernel. For each body, compute forcesf(t(l),q(l),v(l)), if any. Store these forces
and torques intoFj andCj . For example, apply the gravitational and gyroscopic forces.

4. (GPU, contact-parallel) Contact preprocessing kernel. For each contact, given contact normal and posi-
tion, compute in-place the matricesDT

i,vA
, DT

i,ωA
andDT

i,ωB
, then computeηi and the contact residualbi =

{ 1
h
Φi(q), 0, 0}T .

5. (GPU, body-parallel) CCP force kernel. For each bodyj, initialize body velocities:̇r(l+1)
j = h m−1

j Fj and

ω
(l+1)
j = h J−1

j Cj .

6. (If warm starting is needed, simply skip the computationsof the ∆γr+1
i in the following two steps and use

∆γr+1
i = γ∗

i instead).

7. (GPU, contact-parallel) CCP contact iteration kernel. For each contacti, do
γr+1

i = λ ΠΥi

(
γr

i − ωηi

(
DT

i vr + bi

))
+ (1 − λ)γr

i . Note thatDT
i vr is evaluated with sparse data, using

Eq. (24). Store∆γr+1
i = γr+1

i − γr
i in contact buffer. Compute sparse updates to the velocitiesof the two

connected bodiesA andB, that is the four vectors of Eq. (26), and store them in theRi,A andRi,B slots of the
reduction buffer. Also copyni,A andni,B in the same slots.

8. (GPU, constraint-parallel) CCP constraint iteration kernel. For each constrainti, do
γr+1

i = λ
(
γr

i − ωηi

(
∇ΨT

i vr + bi

))
+ (1 − λ)γr

i . Note that∇ΨT
i vr is evaluated with sparse data, using

Eq. (27). Store∆γr+1
i = γr+1

i − γr
i in contact buffer. Compute sparse updates to the velocitiesof the two

connected bodiesA andB, that is the four vectors of Eq. (28), and store them in theRi,A andRi,B slots of the
reduction buffer. Also copyni,A andni,B in the same slots.

9. (GPU, reduction-slot-parallel) RMVLA binary reduction kernel. Do an inner loop with this kernel, starting
with k = nR and ending withk = 1. At thek-th inner iteration, for each slot of the reduction kernel, if the slot
repetition countern ≥ 2k−1, add slot values to the slot whose index is arretrated2k−1 positions, and set counter
to 0.

10. (GPU, body-parallel) Body velocity updates kernel. For eachj body, add the cumulative velocity updates
which can be fetched from the reduction buffer, using the indexRj .

11. Repeat from step 7 until convergence or until number of CCP steps reachedr > rmax.

14

N.of bricks Serial GPU parallel
Version Version

Core Duo 2.33GHz GeForce 8800 GTX
1000 0.43 0.06
2000 0.87 0.10
8000 3.19 0.42

Table 1: Average simulation times (in s) for a single time step of the 3D wall benchmark.

12. (GPU, body-parallel) Time integration kernel. For eachj body, perform time integration asq(l+1)
j = q

(l)
j +

hL(q
(l)
j)v

(l+1)
j

13. (Host, serial) Copy body data structures from GPU memory to host memory. Copy contact multipliers from
GPU memory to host memory.

Numerical Results

We tested the GPU-based parallel method with a benchmark problem and compared it, in terms of computing ve-
locities, with the serial method. The benchmark problem consists of a 3D wall which gets an initial hit and falls into
pieces. Depending on the level of complexity of the simulated scenario, there are 1000, 2000 or 8000 bricks, simulated
as rigid bodies. The number of contacts is not constant during the simulation; the amount of contacts can reach very
high values during the simulation of the case of 8000 bricks,where the peak number of contacts is in the order of tens
of thousands. The friction coefficient between bricks, and between bricks and ground, was set to 0.6. The time step
for the entire simulation ish = 0.01s.

The simulation time increases linearly with the number of bodies in the model. Moreover, the GPU algorithm is,
on average, one order of magnitude faster than the serial algorithm (see Tab.1).

The speedup shown in the table could be even more dramatic if one takes into account that those results include also
the time spent in performing collision detection and other CPU-intensive computations which are not yet parallelized
[41]. In fact, once the CCP solver is implemented in the GPU, the collision detection becomes the bottleneck of the
entire process. This motivates future research about the parallelization of collision detection algorithms.

In a second example we simulated a bicycle running on uneven pavement, as a case of system with both contacts
and bilateral constraints. The vehicle is modeled with 5 rigid bodies, while the driver is built with 13 rigid bodies. All
parts can collide with frictional contacts. The total number of scalar bilateral constraints, caused by joints and links, is
about one hundred. The contact between the tires and the ground is represented by a custom model which we developed
and validated with experimental tests in our labs [42]; thiscontact model takes into account the elastic deformation of
the tyres and can be used for simulating uneven pavements. Figure 9 shows two frames of the simulation, where the
effect of misplaced stone slabs can be studied.

We noticed that, for simple systems like this one, the speedup coming from GPU parallel processing is not sub-
stantial, and the CPU timings would be acceptable anyway. A more appreciable speedup would happen if simulating,
for example, many bicycles at once: this is the case, for instance, of genetic optimization or sensitivity analysis.

Conclusions

A parallel numerical method has been proposed for the simulation of multibody mechanical systems with frictional
contacts and bilateral constraints. The method draws on NVIDIA’s CUDA library and compile-time support to take
advantage of the high-performance parallel computation resources available on the GPU. The parallel method is based
on an iterative approach that falls within the mathematicalframework of measure differential inclusions [24] and is
backed by a rigorous convergence analysis [3].

The parallelization of the method required the developmentof a novel data reduction algorithm, called RMVLA,
which maximizes the occupancy of the streaming processors in a critical part of the execution code that requires

15

Figure 9: Example: simulation of a dummy on a bycicle.

fine-grained data synchronization. Preliminary results obtained with the proposed method demonstrate that for large
frictional contact problems the time required to solve the cone complementarity problem, which is the computational
bottleneck associated with the sequential algorithm, has been drastically reduced. The iterative solver has been imple-
mented in the C++ language in the open source simulation software Chrono::Engine. Future efforts will address the
possibility of using clusters of multiple GPU boards on the same host, as well as porting part of the collision detection
engine code to the GPU.

Acknowledgment

Financial support for the second author is provided in part by National Science Foundation under Grant No. CMMI-
0700191. A. Tasora and D. Negrut thank the NVIDIA corporation for sponsoring their research programs in the area
of high-performance multibody dynamics simulation.

References

[1] NVIDIA. CUDA Programming Guide. Available online at http://developer.download.nvidia.com/compute/cuda/11/
NVIDIA CUDA ProgrammingGuide1.1.pdf, 2007.

[2] A. Tasora. High performance complementarity solver fornon-smooth dynamics. In C. L. Bottasso, P. Masarati,
and L. Trainelli, editors,Proceedings of the ECCOMAS Multibody Dynamics Conference, Milano, Italy, 2007.

[3] M. Anitescu and A. Tasora. An iterative approach for conecomplementarity problems for nonsmooth dynamics.
Computational Optimization and Applications, 2008, in press.

[4] J. Madsen, N. Pechdimaljian, and D. Negrut. Penalty versus complementarity-based frictional contact of rigid
bodies: A CPU time comparison. Technical Report TR-2007-05, Simulation-Based Engineering Lab, University
of Wisconsin, Madison, 2007.

[5] Bruce R. Donald and Dinesh K. Pai. On the motion of compliantly connected rigid bodies in contact: a system
for analyzing designs for assembly. InProceedings of the Conf. on Robotics and Automation, pages 1756–1762.
IEEE, 1990.

[6] Peng Song, P. Kraus, Vijay Kumar, and P. Dupont. Analysisof rigid-body dynamic models for simulation of
systems with frictional contacts.Journal of Applied Mechanics, 68(1):118–128, 2001.

[7] Peng Song, Jong-Shi Pang, and Vijay Kumar. A semi-implicit time-stepping model for frictional compliant
contact problems.International Journal of Numerical Methods in Engineering, 60(13):267–279, 2004.

16

[8] Jong-Shi Pang, Vijay Kumar, and Peng Song. Convergence of time-stepping method for initial and boundary-
value frictional compliant contact problems.SIAM J. Numer. Anal., 43(5):2200–2226, 2005.

[9] Jean J. Moreau. Standard inelastic shocks and the dynamics of unilateral constraints. In G. Del Piero and
F. Macieri, editors,Unilateral Problems in Structural Analysis, pages 173–221, New York, CISM Courses and
Lectures no. 288, Springer–Verlag, 1983.

[10] P. Lotstedt. Mechanical systems of rigid bodies subject to unilateral constraints.SIAM Journal of Applied
Mathematics, 42(2):281–296, 1982.

[11] M. D. P.Monteiro Marques.Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Fric-
tion, volume 9 ofProgress in Nonlinear Differential Equations and Their Applications. Birkhäuser Verlag, Basel,
Boston, Berlin, 1993.

[12] Jong-Shi Pang and David Stewart. Differential variational inequalities.Mathematical Programming, 113(2):345–
424, 2008.

[13] David Baraff. Issues in computing contact forces for non-penetrating rigid bodies.Algorithmica, 10:292–352,
1993.

[14] Jong-Shi Pang and Jeffrey C. Trinkle. Complementarityformulations and existence of solutions of dynamic
multi-rigid-body contact problems with Coulomb friction.Math. Program., 73(2):199–226, 1996.

[15] Jeffrey Trinkle, Jong-Shi Pang, Sandra Sudarsky, and Grace Lo. On dynamic multi-rigid-body contact problems
with Coulomb friction.Zeitschrift fur angewandte Mathematik und Mechanik, 77:267–279, 1997.

[16] David E. Stewart and Jeffrey C. Trinkle. An implicit time-stepping scheme for rigid-body dynamics with inelastic
collisions and Coulomb friction.International Journal for Numerical Methods in Engineering, 39:2673–2691,
1996.

[17] Mihai Anitescu and Florian A. Potra. Formulating dynamic multi-rigid-body contact problems with friction as
solvable linear complementarity problems.Nonlinear Dynamics, 14:231–247, 1997.

[18] Mihai Anitescu, Florian A. Potra, and David Stewart. Time-stepping for three-dimensional rigid-body dynamics.
Computer Methods in Applied Mechanics and Engineering, 177:183–197, 1999.

[19] David E. Stewart. Rigid-body dynamics with friction and impact.SIAM Review, 42(1):3–39, 2000.

[20] Richard W. Cottle and George B. Dantzig. Complementarypivot theory of mathematical programming.Linear
Algebra and Its Applications, 1:103–125, 1968.

[21] David Baraff. Fast contact force computation for nonpenetrating rigid bodies. InComputer Graphics (Proceed-
ings of SIGGRAPH), pages 23–34, 1994.

[22] Mihai Anitescu and Gary D. Hart. A fixed-point iterationapproach for multibody dynamics with contact and
friction. Mathematical Programming, Series B, 101(1):3–32, 2004.

[23] Alessandro Tasora, E. Manconi, and M. Silvestri. Un nuovo metodo del simplesso per il problema di comple-
mentarit lineare mista in sistemi multibody con vincoli unilateri. In Proceedings of AIMETA 05, Firenze, Italy,
2005.

[24] Mihai Anitescu. Optimization-based simulation of nonsmooth rigid multibody dynamics.Math. Program.,
105(1):113–143, 2006.

[25] A. A. Shabana.Dynamics of Multibody Systems. Cambridge University Press, third edition, 2005.

[26] Mihai Anitescu, James F. Cremer, and Florian A. Potra. Formulating 3d contact dynamics problems.Mechanics
of Structures and Machines, 24(4):405–437, 1996.

17

[27] Young J. Kim, Ming C. Lin, and Dinesh Manocha. Deep: Dual-space expansion for estimating penetration depth
between convex polytopes. InProceedings of the 2002 International Conference on Robotics and Automation,
volume 1, pages 921–926. Institute for Electrical and Electronics Engineering, 2002.

[28] EG Gilbert, DW Johnson, and SS Keerthi. A fast procedurefor computing the distance between complex ob-
jectsin three-dimensional space.Robotics and Automation, IEEE Journal of [see also IEEE Transactions on
Robotics and Automation], 4(2):193–203, 1988.

[29] H. Olsson, K.J. Astrom, C.C. de Wit, M. Gafvert, and P. Lischinsky. Friction models and friction compensation.
European Journal of Control, 4(3):176–195, 1998.

[30] Dimitri P Bertsekas.Nonlinear Programming. Athena Scientific, Belmont, MA, 1995.

[31] J. J. Moreau. Unilateral contact and dry friction in finite freedom dynamics. In J. J. Moreau and P. D. Pana-
giotopoulos, editors,Nonsmooth Mechanics and Applications, pages 1–82, Berlin, Springer-Verlag, 1988.

[32] J. S. Pang and D. E. Stewart. Differential variational inequalities.Mathematical Programming, 113:1–80, 2008.

[33] David E. Stewart. Convergence of a time-stepping scheme for rigid body dynamics and resolution of Painleve’s
problems.Archive Rational Mechanics and Analysis, 145(3):215–260, 1998.

[34] Mihai Anitescu and Gary D. Hart. A constraint-stabilized time-stepping approach for rigid multibody dynamics
with joints, contact and friction.International Journal for Numerical Methods in Engineering, 60(14):2335–
2371, 2004.

[35] M. Flynn. Some computer organizations and their effectiveness.IEEE Trans. Comput., C-21:948, 1972.

[36] Leslie Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs.IEEE
Trans. on Comput., C-28,9:690–691, 1979.

[37] T. Harada. Real-time rigid body simulation on gpus. In Hubert Nguyen, editor,GPU Gems 3, chapter 23.
Addison-Wesley, 2007.

[38] M. Harris. Mapping computational concepts to gpus. InACM SIGGRAPH 2005 Proceedings. ACM Press, 2005.

[39] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A.E. Lefohn, and T. Purcell. A survey of general-
purpose computation on graphics hardware.Computer Graphics Forum, 26-1:80–113, 2007.

[40] David Roger, Ulf Assarsson, and Nicolas Holzschuch. Efficient stream reduction on the gpu. In David Kaeli and
Miriam Leeser, editors,Workshop on General Purpose Processing on Graphics Processing Units, oct 2007.

[41] Physics Simulation Forum. Bullet Physics Library. Available online at
http://www.bulletphysics.com/Bullet/wordpress/bullet, 2008.

[42] M. Crispino, E. Vaghi, and A. Tasora. New method to assess ride safety on uneven element pavements.J. Transp.
Engrg., 131:27–36, 2005.

18

