
Int. J. Vehicle Performance, Vol. x, No. x, 1–20 1

Chrono::Vehicle – Template-Based Ground Vehicle
Modeling and Simulation

Abstract: Chrono::Vehicle is a module of the open-source multi-physics
simulation package Chrono, aimed at modeling, simulation, and visualization of
wheeled and tracked ground vehicle multi-body systems. Its software architecture
and design was dictated by the desire to provide an expeditious and user-
friendly mechanism for assembling complex vehicle models, while leveraging
the underlying Chrono modeling and simulation capabilities, allowing seamless
interfacing to other optional Chrono modules (e.g., its granular dynamics and
fluid-solid interaction capabilities), and providing a modular and expressive API
to facilitate its use in third-party applications. Vehicle models are specified as
a hierarchy of subsystems, each of which is an instantiation of a predefined
subsystem template. Written in C++, Chrono::Vehicle is offered as a middleware
library.

In this paper, we provide an overview of the Chrono::Vehicle software design
philosophy, its main capabilities and features, describe the types of ground
vehicle mobility simulations it enables, and outline several directions of future
development and planned extensions.

Keywords: Chrono; Vehicle modeling; Template-based design; JSON.

1 Introduction

1.1 Brief overview of Chrono

Chrono [27] is an open-source multi-physics software package, which is distributed under
a permissive BSD-3 license [22]. The core functionality of Chrono provides support for
the modeling, simulation, and visualization of rigid multibody systems, with additional
capabilities offered through optional modules. These modules provide support for additional
classes of problems (e.g., finite element analysis and fluid-solid interaction), for modeling
and simulation of specialized systems (such as ground vehicles and granular dynamics
problems), or for providing specialized parallel computing algorithms (multi-core, GPU,
and distributed) for large-scale simulations.

Chrono is almost entirely written in C++ and it is compiled into a library subsequently
used by third-party applications. As such, Chrono is middleware software; i.e., software
that supports customized solutions that potentially involve other user code and/or third-
party software. A user can invoke functions implemented in Chrono via an Application
Programming Interface (API) that comes in two styles: C++ and Python. Chrono, which
runs on Windows, Linux, and Mac OSX, is organized into modules that are functionally
independent. When building the Chrono middleware library only the modules of interest are
compiled into libraries that are subsequently linked in a user application. The core module
provides basic functionality required to simulate the dynamics of mechanical systems made
up of bodies, kinematic joints, force elements, 1-D shaft elements, etc. One of the salient
features of Chrono is its ability to account for the geometry (shape) of the elements that
make up the mechanical system simulated. This opens the door to analyses in which the

Copyright © 201X Inderscience Enterprises Ltd.



2 author

user can simulate the interaction between bodies, when the interplay between shape and
frictional contact forces determines the dynamics of the system. In this context, Chrono
has been used to simulate granular dynamics of systems containing millions of bodies
whose macroscale motion is the outcome of micro-scale interaction between pairs of bodies,
modulated by body geometry and frictional contact forces.

Chrono has several modules that provide modeling and simulation support in multi-
physics applications. Chrono::FEA (Finite Element Analysis) is designed to address
challenges specific to the simulation of dynamic systems that might experience large
displacements and/or large rotations and/or large deformations. The flexible bodies can
interact with other system elements via forces, friction and contact, and constraints.
As of release 3.0, Chrono supports three FEA approaches. The absolute nodal
coordinate formulation (ANCF) [25] can be used for large deformations and arbitrary
displacements/rotations. The co-rotational formulation [26] is useful in small deformation
and large displacements/rotations scenarios. Finally, there is preliminary support for
traditional Lagrangian finite elements that can be used for large deformations/displace-
ments/rotations.

Support for fluid-solid interaction (FSI) simulation is provided by Chrono::FSI, which
draws on the Smoothed Particle Hydrodynamics (SPH) method to spatially discretize the
mass and momentum balance equations in fluid dynamics. Chrono currently supports two
approaches to solving the Navier-Stokes equations of motion for incompressible fluids. The
weakly compressible SPH is the de-facto standard in the literature and is implemented in
Chrono using an equation of state for the pressure [6] to enforce incompressibility via
penalty. The pressure acts as a corrective term that seeks to maintain constant fluid density. In
a second approach the fluid incompressibility is enforced via kinematic constraint equations
that maintain a uniform distribution of SPH particles in the fluid flow. This Constrained
Fluid SPH method leads to a set of equations of motion that are solved using the same
methodology involved in granular dynamics simulations. For the latter, preliminary support
is provided by Chrono::Granular, which allows the user to quickly set up large collections
of bodies that each can have a nontrivial geometry.

From an abstract perspective, Chrono rests on five foundation components that
provide the following basic functionality: equation formulation, equation solution, collision
detection and proximity computation, support for parallel computing, and pre/post-
processing, see Fig. 1. The first foundation component, called “Equation Formulation”,
supports general-purpose modeling for large systems of rigid and flexible bodies and
for basic fluid-solid interaction (FSI) problems. The second component, called “Equation
Solution”, provides the algorithmic support needed to numerically solve the resulting
equations of motion. Proximity computation support, essential for collision detection
and computation of short range interaction forces, is provided by the third foundation
component. The fourth component concentrates on parallel computing support at various
levels: vectorization, acceleration using dedicated hardware (GPU), multi-core via OpenMP,
and large scale as enabled by the MPI standard. Finally, the fifth component provides
pre- and post-processing support. For the latter, Chrono has run-time support via Irrlicht
and OpenGL, and uses POV-Ray, Mitsuba, and ParaView for off-line, higher-quality,
visualization.

One of Chrono’s strengths is its reliance on advanced computing hardware at various
stages of the solution process. Indeed, Chrono embraces cache friendly data structures
suitable for vectorization, and algorithms that expose parallelism at data and task levels.
In a quest to reduce simulation times via parallel computing, we have established three



Chrono::Vehicle – Template-Based Ground Vehicle Modeling and Simulation 3

Figure 1: High-level structure of the Chrono multi-physics software package. The public API allows
interfacing either directly to the Chrono physics libraries or, for a lower entry point, intermediated
by various domain-specific toolkits. These toolkits are currently at different stages of maturity. The
Chrono::Vehicle toolkit provides support for the expeditious modeling, simulation, and visualization
of ground vehicles.

modules – Chrono::Cosimulation, Chrono::Distributed, and Chrono::Parallel – that enable
Chrono to map for execution each of the many components of a complex model onto
the appropriate parallel computing hardware architecture. Chrono aims at establishing a
flexible, object-oriented infrastructure that (1) relies on Chrono::Cosimulation to handle in
parallel and independently sub-systems of a complex system; (2) uses the MPI standard to
further partition a large sub-system via Chrono::Distributed into parallel subgroups; and, (3)
invokes services provided by Chrono::Parallel to accelerate execution within each subgroup
using two hardware platforms: NVIDIA GPU and Intel Xeon Phi. This system→ sub-system
→ subgroup cascading is reflected into the Chrono::Cosimulation→Chrono::Distributed
→Chrono::Parallel interplay. For instance, a user enlists the support of modeling elements
from the Chrono Vehicle, FSI, Terramechanics, and FEA modules to put together, for
instance, a simulation of a wheeled vehicle moving on gravel and performing a fording
maneuver. This example has seven sub-systems: four tires, the vehicle body, the granular
terrain, and the fluid component, whose execution is managed by Chrono::Cosimulation.
The large sub-systems; i.e., the terrain and fluid, are further split into subgroups managed by
Chrono::Distributed. Each of these subgroups is independently accelerated via fine-grain
parallelism, a process overseen by Chrono::Parallel.

1.2 Motivation for Chrono::Vehicle

While arbitrary mechanical systems can be directly modeled in Chrono, using its
basic modeling primitives (bodies, joints, force elements, etc.), doing so for models of
higher complexity, size, or lacking a simple straight-forward structure is tedious and
error-prone. Ground vehicle systems can be complicated, involve many tens of bodies
(as is the case for segmented track vehicles), and require intricate connectivity and
precise design configurations. However, typical vehicle multi-body systems have relatively
standard topologies and well-defined hierarchical structure. Moreover, operational and
manufacturing requirements led to a relatively restricted set of designs for the main



4 author

vehicle sub-assemblies, such as suspensions, steering mechanism, track assemblies, etc. As
recognized by most commercial multi-body dynamics software vendors [16, 23, 4] and by
some open-source multi-body simulation software developers, this suggests the design of
modeling tools based on predefined parameterized templates for the major ground vehicle
subsystems. A template-based modeling capability thus enables the expeditious creation of
new vehicles, allows rapid prototyping, and facilitates model re-use.

Chrono::Vehicle is the embodiment of this approach in the Chrono software suite. Its
modular design, consistent API, rich set of templates, and organization of the simulation
time integration loop additionally enable easy replacement of various systems ("plug-and-
play" philosophy) and seamless interfacing to third-party libraries. The architecture of
the Chrono::Vehicle module allows both fully coupled and co-simulation approaches for
vehicle-terrain simulations. In the latter case, the vehicle, terrain, engine, and driver systems
evolve in parallel with periodic data communication, for example in an explicit force–
displacement co-simulation framework [21, 24].

In addition to providing Chrono users with the expected benefits of template-based
ground vehicle modeling, Chrono::Vehicle was also architected and designed to leverage
existing and future extensions modeling capabilities in Chrono and capitalize on its
underlying high-performance and parallel computing facilities. Chrono::Vehicle models
can be easily incorporated in complex, multiphysics simulations, such as flexible tires on
granular terrain [21], fluid-solid interaction (FSI) fording scenarios [13], and autonomous
and connected vehicle tests [3].

2 Template-based modeling

Chrono::Vehicle provides a collection of templates for various topologies of both wheeled
and tracked vehicle subsystems, support for modeling rigid, flexible, and granular terrain,
support for closed-loop and interactive driver models, and run-time and off-line visualization
of simulation results.

Modeling of vehicle systems is done in a modular fashion, with a vehicle
defined as an assembly of instances of various subsystems (suspension, steering,
driveline, etc.). Flexibility in modeling is provided by adopting a template-based
design. In Chrono::Vehicle, templates are parameterized models that define a particular
implementation of a vehicle subsystem. As such, a template defines the basic modeling
elements (bodies, joints, force elements), imposes the subsystem topology, prescribes the
design parameters, and implements the common functionality for a given type of subsystem
(e.g., suspension) particularized to a specific template (e.g., double wishbone). Finally,
an instantiation of such a template is obtained by specifying the template parameters
(hardpoints, joint directions, inertial properties, contact material properties, etc.) for a
concrete vehicle (e.g., the HMMWV front suspension).

The core templates in Chrono::Vehicle are parameterized models of vehicle
subcomponents. However, a complete vehicle mobility simulation also requires auxiliary
systems, external to the vehicle itself, such as a driver system to provide input controls
(e.g., steering, throttle, braking), a powertrain system which encapsulates the engine and
transmission and connects to the the vehicle driveline, and a terrain system.

A Chrono::Vehicle simulation loop takes the form of a force-displacement co-
simulation scheme, with the exchange data illustrated in Fig. 2a for wheeled vehicles
and Fig. 2b for tracked vehicles. This software architecture was adopted in order to (i)



Chrono::Vehicle – Template-Based Ground Vehicle Modeling and Simulation 5

(a) Wheeled vehicles

(b) Tracked vehicles

Figure 2: Main systems and exchange data flow for the wheeled and tracked vehicles. The software
architecture and design of Chrono::Vehicle allows third-party plugins for any or all of the driver,
powertrain, tire, and terrain systems.

provide modularity and flexibility; (ii) permit use of third-party auxiliary system models and
integration of Chrono::Vehicle models in larger simulation frameworks; and (iii) enable
co-simulation with external tools or with other Chrono modules. This simulation flow
is enforced through the Chrono::Vehicle API which imposes that all systems provide a
Synchronize method, which implements the data exchange, and an Advance method,
which implements the system dynamics (i.e., advances the system’s states to the next
data exchange time point). Note however that a vehicle mobility simulation that uses
auxiliary systems providing with Chrono::Vehicle (see Section 3.1) may also be set up as
a monolithic, all-at-once coupled simulation.

For wheeled vehicle systems, templates are provided for the following subsystems:
suspension (double wishbone, reduced double wishbone using distance constraints, multi-
link, solid-axle, MacPhearson strut, semi-trailing arm); steering (Pitman arm, rack-and-
pinion); driveline (2WD and 4WD shaft-based using specialized Chrono modeling
elements, simplified kinematic driveline); wheel (simply a carrier for additional mass and
inertia appended to the suspension’s spindle body); brake (simple model using a constant
torque modulated by the driver braking input).

Chrono::Vehicle offers a variety of tire models and associated templates, ranging from
rigid tires, to semi-empirical models (such as Pacejka and Fiala), to fully deformable tires
modeled with finite elements (using either an Absolute Nodal Coordinate Formulation or a
co-rotational formulation).



6 author

For tracked vehicles, the following subsystem templates are available: track shoe (single-
and double-pin) and associated sprocket templates (with corresponding gear profiles),
suspension (torsional spring with either linear or rotational damper, hydraulic), idler (with
tensioner mechanism), and rollers.

As a middleware library, Chrono::Vehicle requires the user to provide C++ classes
for a concrete instantiation of a particular template. An optional Chrono library provides
complete sets of such concrete C++ classes for a few ground vehicles, both wheeled
and tracked, which can serve as examples for other specific vehicle models. While such
classes are typically very lightweight, this requires some programming experience and,
more importantly, makes it more difficult to encapsulate Chrono::Vehicle in a design
exploration and virtual prototyping work-flow. To address this issue, we provide an
alternative mechanism for defining concrete instantiation of vehicle system and subsystem
templates, which is based on input specification files in the JSON format [2]. Following
the hierarchy of subsystem templates for its given type (wheeled or tracked), a vehicle
can be completely defined through a corresponding hierarchy of JSON files that specify
the concrete template parameters or else defer to further JSON specification files for sub-
components. Listing 1 is an example of a top-level JSON specification file for a wheeled
vehicle. Together with all other input files it refers to, this JSON file completely describes a
concrete wheeled vehicle with two axles, using double wishbone suspensions both in front
and rear, a Pitman arm steering mechanism attached to the front axle, and a rear-wheel
driveline.

3 Chrono::Vehicle templates and capabilities

In this section, we provide an overview of the system- and subsystem-level templates
available in Chrono::Vehicle.

Each vehicle subsystem is defined with respect to its own reference frame; in other
words, all hardpoint locations in a vehicle subsystem template must be provided with
respect to the subsystem’s reference frame. A vehicle system, be it wheeled or tracked, is
then constructed as a collection of concrete instantiations of templates for its constituent
components by specifying their position and orientation with respect to the vehicle reference
frame and providing connectivity information, as required (e.g., attaching a particular
steering mechanism to a particular axle/suspension of a wheeled vehicle).

Chrono::Vehicle uses exclusively the ISO vehicle axes convention, namely a right-hand
frame with X forward, Z up, and Y pointing to the left of the vehicle (see ISO 8855:2011).
Figure 3 illustrates the vehicle reference frame O1 (by convention aligned with that of the
chassis subsystem), as well as subsystem reference frames (O′

2 and O′′
2 for the front and

rear suspensions, and O3 for the steering mechanism) for a wheeled vehicle with two axles.

3.1 Common systems

We begin by describing the auxiliary systems, not part of the vehicle system itself, but
required to set up a complete vehicle mobility simulation, namely the terrain, driver,
and powertrain systems. For uniformity and modeling flexibility, these systems are also
templatized. Moreover, a consistent public API allows a Chrono::Vehicle vehicle model to



Chrono::Vehicle – Template-Based Ground Vehicle Modeling and Simulation 7

Listing 1: Sample JSON specification file for a wheeled vehicle

1 {
2 "Name" : "Test vehicle − Double Wishbone" ,
3 "Type" : "Vehicle" ,
4 "Template" : "WheeledVehicle" ,
5

6 "Chassis" : {
7 "Input File" : "generic / chassis /Chassis . json"
8 },
9

10 "Axles" : [
11 {
12 "Suspension Input File" : "generic / suspension /DoubleWishbone. json" ,
13 "Suspension Location" : [1.25 , 0, −0.21],
14 "Steering Index" : 0,
15 "Left Wheel Input File" : "generic /wheel/WheelSimple. json" ,
16 "Right Wheel Input File" : "generic /wheel/WheelSimple. json" ,
17 "Left Brake Input File" : "generic /brake /BrakeSimple . json" ,
18 "Right Brake Input File" : "generic /brake /BrakeSimple . json"
19 },
20 {
21 "Suspension Input File" : "generic / suspension /DoubleWishbone. json" ,
22 "Suspension Location" : [−1.25, 0, −0.21],
23 "Left Wheel Input File" : "generic /wheel/WheelSimple. json" ,
24 "Right Wheel Input File" : "generic /wheel/WheelSimple. json" ,
25 "Left Brake Input File" : "generic /brake /BrakeSimple . json" ,
26 "Right Brake Input File" : "generic /brake /BrakeSimple . json"
27 }
28 ] ,
29

30 "Steering Subsystems" : [
31 {
32 "Input File" : "generic / steering /PitmanArm. json" ,
33 "Location" : [1.1 , 0, −0.4],
34 "Orientation" : [0.98699637, 0, 0.16074256, 0]
35 }
36 ] ,
37

38 "Driveline" : {
39 "Input File" : "generic / driveline /Driveline2WD. json" ,
40 "Suspension Indexes" : [1]
41 }
42 }



8 author

Figure 3: ISO vehicle reference frames.

be integrated in third-party applications which may provide alternative models for any or
all of these auxiliary systems.

3.1.1 Terrain system templates

Chrono::Vehicle provides several classes of terrain and soil models, of different fidelity
and computational complexity, ranging from rigid, to semi-empirical Bekker-Wong type
models [29], to complex physics-based models based on either a granular or finite-element
based soil representation.

The simplest model, suitable for many on-road vehicle test maneuvers, assumes a
perfectly rigid terrain. Depending on the tire model employed (see Section 3.3), the tire-
terrain interaction in this case reduces to either a simple height-normal query to the terrain
system, or else falls back to the underlying Chrono frictional contact processing. In
Chrono::Vehicle, a rigid terrain can be perfectly flat, provided as an arbitrary triangular
mesh (specified as a Wavefront OBJ file), or defined through a height-map given as a gray-
scale BMP image.

A second terrain template in Chrono::Vehicle provides a lower-fidelity, semi-empirical
deformable soil model which is based on the Bekker set of parameters. This model is based
on the Soil Contact Model (SCM) developed by Gibbesch and collaborators [5, 11]. In this
context, soil is represented by a mesh whose deformation is achieved via vertical deflection
of its nodes. Differently from the original SCM model, which uses regular grids, we extended
this model to the case of non-structured triangular meshes. Moreover, to address memory
and computational efficiency concerns, we implemented an automatic refinement of the
mesh in order to create additional fine details where vehicle tires and track shoes interact
with the soil. This soil model draws on the general-purpose collision engine in Chrono
and its lightweight formulation allows computing vehicle-terrain contact forces in close to
real-time.

Finally, leveraging the Chrono::FEA and Chrono::Granular modules, deformable
soil can be modeled using either finite elements or granular material including contact,



Chrono::Vehicle – Template-Based Ground Vehicle Modeling and Simulation 9

friction, and cohesion. The former uses a continuum soil model based on multiplicative
plasticity theory with Drucker-Prager failure criterion and a specialized 9-node brick
element which alleviates locking issues with standard 8-node FEA brick elements without
the need for numerical techniques such as enhanced assumed strain [32]. Physics-based
deformable soil models based on granular dynamics simulations can be performed using the
underlying Chrono support for the Discrete Element Method (DEM). Unlike continuum-
based deformable terrain modeling approaches, DEM treats all component particles
separately, as distinct entities, by maintaining and advancing in time their states while
taking into account pair-wise interaction forces due to frictional contact. Chrono::Vehicle
simulations on granular terrain can use either of the two methods supported in Chrono,
namely a penalty-based, compliant-body approach, or a complementarity-based, rigid-
body approach [27]. Since meaningful mobility simulations of vehicles on granular terrain
typically result in DEM problems with millions of degrees of freedom, these are typically
run on parallel hardware, using either the Chrono::Parallel module for a coupled vehicle-
terrain simulation [20], or else Chrono::Distributed in a co-simulation framework [21, 24].

3.1.2 Driver system templates

Driver inputs (steering, throttle, and braking) are provided from a driver subsystem with
available options in ChronoVehicle including interactive, data-driven, and closed-loop (e.g.,
path-following based on PID controllers).

The base C++ class for a driver system in Chrono::Vehicle imposes minimal
requirements from a driver system template, in particular the ability to return throttle input
(normalized in the [0, 1] range), steering input (normalized in the [−1,+1] range, with a
negative value indicating steering to the left), and braking input (normalized in the [0, 1]
range). In addition, a driver system can receive information from any other system (e.g.,
the vehicle state) through its Synchronize method and may have internal dynamics
(implemented in its Advance method). Specific templates for a driver system may extend
the set of vehicle inputs generated, for example including the current selected gear for a
manual transmission, enabling/disabling the cross-drive capability on a tracked vehicle, etc.

The Chrono::Vehicle library includes several templates for driver systems. For
interactive simulations, run in soft real-time, we provide a template for a driver system
which produces the vehicle inputs based on user controls, either keyboard and mouse, or a
game controller. For design of experiment simulations, we provide a driver system template
that is based on inputs provided through a text data file, with the vehicle inputs obtained
through linear interpolation. Such data files can also be automatically generated by data
collected during interactive runs.

Finally, Chrono::Vehicle includes several closed-looped driver system models, based
on underlying support for PID controllers. These include speed controllers (which adjust
the throttle and braking input simultaneously to maintain a constant vehicle speed) and
path-follower controllers. The latter adjust the steering input so that the vehicle follows a
user-defined path specified as a Bezier curve. A second type of closed-loop driver controllers,
developed under the Chrono::CAVE module, provide vehicle inputs based on sensor data
(LiDAR, GPS, IMU) for simulations involving connected and autonomous vehicles [3] and
model-predictive controllers for obstacle-avoidance [8].



10 author

Figure 4: Schematic of a 4WD wheeled-vehicle powertrain. For modeling flexibility in
Chrono::Vehicle, the engine, torque converter, and transmission are combined in a so-called
powertrain system, while the drive shafts, transfer case, differentials, etc. are combined in the vehicle
driveline subsystem.

3.1.3 Powertrain system templates

Although technically part of the vehicle itself, for additional modeling flexibility and to
allow use of more sophisticated third-party engine models, Chrono::Vehicle collects the
engine, torque converter, and transmission box into a distinct system, separate from the
vehicle driveline, as shown in Fig. 4.

Several powertrain templates, of varying complexity, are provided with the Chrono
software distribution. The simplest one uses a trivial engine torque-speed relationship, acting
like a DC-motor and has no transmission. A more complex template uses a kinematic model
based on arbitrary user-provided torque-speed engine curves and includes a simplified model
of a (manual or automatic) transmission box with both reverse and forward gears.

The most sophisticated powertrain template provided in Chrono::Vehicle is based
on 1-D shaft elements (i.e. modeling components that carry only rotational inertia) and
specialized constraints between such elements and rigid bodies or between shaft elements.
This template includes an engine model based on speed-torque curves (power and losses),
torque converter based on capacity factor and torque ratio curves, and a transmission model
parameterized by an arbitrary number of forward gear ratios and a single reverse gear ratio.
The engine block can be mounted longitudinally or transversally and connected to the
vehicle chassis to capture torque transfer effects.

3.2 Wheeled vehicles

A wheeled vehicle in Chrono::Vehicle is a specialization of the abstract generic vehicle
subsystem and is defined as a collection of subsystems (see Fig. 5). A wheeled vehicle
contains a chassis subsystem, a driveline subsystem, and an arbitrary number of axles
which, by convention, are numbered starting at the front of the vehicle). Multi-steer vehicles
are supported by allowing either an arbitrary number of steering mechanisms (which are



Chrono::Vehicle – Template-Based Ground Vehicle Modeling and Simulation 11

Figure 5: Decomposition of a wheeled vehicle into its subsystems. Also illustrated are the data
exchanged with the systems external to the vehicle itself (driver, powertrain, and terrain).

connected to different axles) or by allowing multiple steerable axles to be connected to the
same steering mechanism.

This base wheeled vehicle configuration can be easily extended through user code
to different topologies. Various demonstration programs distributed with the Chrono
package [22], provide examples of such extensions, including tractor-trailer configurations
and vehicles with an articulated chassis.

Suspension subsystem. To accommodate both independent and dependent suspension
assemblies under a unified API, the Chrono::Vehicle convention is that a suspension
subsystem includes both left and right sides. However, for symmetric components, any
particular suspension template only requires parameters for the left side (with the right side
obtained by automatic mirroring). Furthermore, the Chrono::Vehicle convention is that a
suspension subsystem is defined with respect to a local reference frame that is aligned with
the vehicle frame (in other words, only an offset is required to place a suspension assembly
in a vehicle system).

Every suspension template defines its own set of bodies and joints and the topology
of the mechanical system. Template parameters include locations of body center of mass
locations, hardpoint locations, and possibly unit vectors for defining joint orientations. In
addition, body masses and inertia tensors, as well as rotational inertias of the two axle
shafts are template parameters. Figure 6a illustrates the modeling components for the double
wishbone suspension template in Chrono::Vehicle which consists of two spindle bodies,
two upright bodies, and four (lower and upper) control arms, connected through spherical
and revolute joints, with the tie rods modeled using distance constraints. The hardpoint
locations for this template are marked in Fig. 6b.

A Chrono::Vehicle user has complete freedom in defining the springs and shocks which,
in most cases, need not be collinear. The suspension templates allow use of linear or non-
linear spring and damper force elements, the latter defined either through lookup tables or
else as arbitrary functions.



12 author

(a) Modeling components (b) Template parameters and hardpoints

Figure 6: Double wishbone suspension template. The subsystem topology and modeling elements
are shown at left; the schematic at right illustrates the hardpoints defined by this template.

Besides the double wishbone template of Fig. 6, Chrono::Vehicle provides templates
for multi-link, MacPhearson strut, solid-axle, semi trailing arm, Hendrickson PRIMAXX,
and Polaris independent rear suspensions.

Steering subsystem. At the present time, two templates are provided for steering
mechanisms: Pitman arm and rack-pinion. Unlike suspension templates, a steering
mechanism can be offset and rotated when placed within a vehicle system. As mentioned
before, a Chrono::Vehicle wheeled vehicle can contain an arbitrary number of steering
mechanisms or connect more than one axle to a single steering mechanism.

Driveline subsystem. Chrono::Vehicle provides a simplified driveline model, suitable for
4WD vehicles, which uses a constant front/rear torque split and simple models of Torsen
limited-slip differentials. In addition, two other templates, both using Chrono 1-D shaft
elements and specialized connecting elements are provided, for 2WD and 4WD vehicles.
Figure 7 shows a schematic of the shafts-based 4WD driveline template and its parameters,
including the inertia of the various shafts and the gear ratios of the transfer case, differentials,
and conical gears.

At initialization, a Chrono::Vehicle driveline subsystem is connected to one or two of
the vehicle’s axles.

Other wheeled vehicle subsystems. In addition to the main components mentioned above,
Chrono::Vehicle includes templates for the brake subsystem (simplified model using
a braking-input proportional torque), anti-roll bar subsystem (modeled with two bars
connected through a rotational spring-damper), and the wheel subsystem (which is simply
a carrier of additional mass and inertia to be compounded with that of the associated
suspension spindle).

3.3 Tire models

Chrono::Vehicle currently supports three different classes of tire models: rigid, semi-
empirical, and finite element. The rigid tires are the simplest of the three tire classes offered.
The assumption for these models is that the tire is completely rigid and it interacts with
the ground and any other rigid objects through the same underlying friction and contact
algorithms as the other rigid bodies in Chrono. The contact geometry for these tires can
be as simple as a cylinder or as complex as a 3D triangular mesh. These models are not



Chrono::Vehicle – Template-Based Ground Vehicle Modeling and Simulation 13

Figure 7: Schematic of the 4WD shafts-based driveline template for wheeled vehicles. The
parameters of this template are the inertias of the various shaft and the gear ratios indicated in the
figure.

only useful for debugging the overall vehicle model, but they can also be used in cases
where runtime is important, the terrain is much softer than the tire, and a highly detailed
model of the tire is unnecessary. Such examples can be found in the work by Wong and
Reece [30, 31, 29].

The second class of tires models offered are the semi-empirical ones commonly used
for vehicle handling. Chrono::Vehicle currently supports a LuGre friction based tire model,
a Fiala tire model, and a Pacejka based model. The LuGre tire model implemented in
Chrono::Vehicle is a multi-point contact tire model based on a series of stacked rigid discs.
Each disc generates its normal load with respect to ground via a penalty method based
on its penetration within the ground surface [14]. The longitudinal and lateral dynamics
for each disc are based on a LuGre bristle based friction model [1]. Since tires typically
have different longitudinal and lateral slip characteristics, the there are independent and
uncoupled friction state equations for each direction. The force contributions from each
disc are then summed and translated to the center of the wheel. Since multiple discs are
used, the model is able to generate an overturning moment that would not exist if only a
single disc was used. Like the other semi-empirical models, the friction and other model
parameters for the LuGre tire model can be generated by fitting measured data.

The Fiala tire model implemented in Chrono::Vehicle is largely based on the transient
Fiala tire model presented in the MSC ADAMS/tire help documentation [28, 17] which uses
tire slip state equations to improve the model’s behavior at slow to zero forward velocities.
Like the LuGre tire model, the Fiala tire model is also based on a brush model assumption
and only requires a small number of coefficients. Unlike the LuGre tire model, the Fiala
tire model assumes that the tire is at zero camber with respect to the road and does not have
any provisions for generating overturning moments. It does however couple the lateral and
longitudinal slip states of the tire in its force and moment calculations, providing a more
realistic description of combined slip than the uncoupled approach in the LuGre model.



14 author

Figure 8: Decomposition of a tracked vehicle into its subsystems. Also illustrated are the data
exchanged with the systems external to the vehicle itself (driver, powertrain, and terrain).

The third and most complex semi-empirical tire model offered is based off of the
equations in Pacejka’s "Tire and Vehicle Dynamics" book as well as the equations in the
MSC ADAMS/tire help for the PAC2002 tire model [19, 17]. This model is an extension
of Pacejka’s earlier Magic Formula tire model with additional equations and coefficients.
Since a large number of vehicle dynamics maneuvers do not occur under steady-state slip
conditions, the contact patch slip state equations were included to provide more accurate
results under transient conditions. The Chrono::Vehicle implementation of Pacejka’s tire
model has been validated against the tire test rig in MSC ADAMS/car [12].

Finally, the third class of tire models offered are full finite element representations of
the tire. While these models have the potential to be the most accurate due to their detailed
physical model of the tire, they are also the most computationally expensive of the tire
model currently available in Chrono::Vehicle [21]. Unlike the rigid or semi-empirical tire
models, the finite element based tire models are able to account for the flexibility in both the
tire and in the ground at the same time, which is an important characteristic for many types
of off-road mobility and vehicle dynamics studies. Since these finite element tire models
leverage the nonlinear finite element capabilities in Chrono, tires have been modeled using
co-rotational continuum elements, co-rotational shell elements, and ANCF shell elements.

3.4 Tracked vehicles

Similar to the wheeled vehicle, a track vehicle in Chrono::Vehicle is a specialization of the
generic vehicle system and is defined as a hierarchy of subsystems, as illustrated in Fig. 8.
Currently, a single topology of tracked vehicles is supported which includes, at the top-level
a chassis subsystem, the vehicle driveline, a steering mechanism, and two track assembly
subsystems. The latter are containers of further subsystems and each includes a sprocket
mechanism, an idler tensioner subsystem, an arbitrary number of suspension components,
and an arbitrary number of track-shoe assemblies.

To eliminate the burden of consistent initialization of the track shoe bodies, the
track assembly subsystem provides algorithmic support for automatic assembly of the



Chrono::Vehicle – Template-Based Ground Vehicle Modeling and Simulation 15

track around the sprocket, idler, road-wheels, and any existing rollers. Specialized track
assemblies and corresponding assembly routines are provided for different combinations
of sprocket profiles and associated track shoe models.

A salient feature of tracked vehicles, which differentiates them from wheeled vehicles, is
the important role played by contacts between internal components. While contact between
track shoe bodies and the track wheels can be directly supported by the underlying frictional
contact algorithms in Chrono, the sprocket-track shoe contact, involving complex and
non-convex profiles, requires special treatment. In Chrono::Vehicle, sprocket profiles are
defined as 2D curves (parameterized differently for sprockets engaging single- and double-
pin track shoes) and the sprocket-track shoe contact is processed with a custom collision
detection algorithm.

Track-shoe subsystem. Chrono::Vehicle offers templates for both single-pin and double-pin
track shoes, each of which can have central or lateral guiding pins. The single-pin track
shoe consists of a single body with non-trivial contact geometry which is connected to its
neighbors through revolute joints. The double-pin track shoe template contains, in addition
to the main track pad body, two additional connector bodies which are connected through
revolute joints to the adjacent pads and which carry the contact geometry for collision with
the track’s sprocket gears.

All track shoe templates are fully parameterized in terms of dimensions, masses and
inertias of the constituent bodies, as well as their contact geometry.

Sprocket subsystem. The sprocket subsystem connects the tracked vehicle driveline to
the track assembly and is responsible for collision detection and contact processing with
the track shoe bodies. A sprocket subsystem template implements the custom collision
detection algorithm for a consistent pair of sprocket gear profile and associated track shoe.
Chrono::Vehicle provides two templates for the sprocket subsystem, corresponding to the
two types of supported track shoes, namely single-pin and double-pin. The sprocket gear
profile is defined as a 2D path composed of line segments and circular arcs which are
parameterized for each type of profile. Collision detection is performed in 2D, working in
the plane of the sprocket gear, but contact forces are calculated in 3D before being applied
to the sprocket and interacting track shoe bodies.

In addition to the gear profile, a sprocket template is parameterized by the mass and
inertia of the sprocket body, the rotational inertia of the sprocket axle, and the separation
distance between the two gears.

Suspension templates. Different suspension configurations are available, including torsion
spring with linear or rotational dampers and a hydropneumatic suspension template. A
track assembly can contain an arbitrary number of suspension subsystems which, for the
templates using a torsion spring, may or may not include a damper. A Chrono::Vehicle
suspension subsystem also contains a road-wheel, themselves templatized based on the type
of track shoe used (central or lateral guiding pins).

Similar to the case of wheeled vehicle, a tracked vehicle suspension template allows
complete freedom in specifying spring and damper forces which can be linear or non-linear,
defined through table lookup or implemented in user-provided C++ functions.

Idler subsystem. A Chrono::Vehicle idler mechanism consists of the idler wheel and a
connecting body. The idler wheel is connected through a revolute joint to the connecting
body which in turn is connected to the chassis through a translational joint. A linear actuator
acts as a tensioner which is modeled as a general spring-damper with optional preload. An
idler subsystem is defined with respect to a frame centered at the origin of the idler wheel,



16 author

optionally pitched relative to the chassis reference frame. The translational joint is aligned
with the X axis of this reference frame, while the axis of rotation of the revolute joint is
aligned with its Y axis.

Like the road-wheels, different templates are provided for the case of tracks with central
or lateral guiding pins.

3.5 Visualization and post-processing

Chrono::Vehicle provides visualization support both for run-time interactive simulations, as
well as for high-quality post-processing rendering for generating animations. Currently, run-
time simulation support expands on the underlying Chrono::Irrlicht module for sequential
simulations [9] or the more computationally efficient but more limited Chrono::OpenGL
module for parallel simulations involving large-scale granular terrain representations [10].
Ongoing development effort involves a transition to an Ogre-based run-time visualization
system [15], as a replacement for Chrono::Irrlicht. Support for ray-traced renderings of
individual simulation frames is offered through utility functions that can be called from
within the simulation loop to export data files with current visualization assets information
and a POV-Ray script [18] that can batch-process these files to generate frame images.

Extraction of simulation results at vehicle-, subsystem-, or model component-level is
currently limited to using the Chrono::Vehicle C++ API which provides an exhaustive set of
methods for this purpose, as well as utility for data filtering, I/O, etc. A specialized module
is currently under development to provide a formal mechanism for extracting a list of all
available output channels and metrics of interest from a vehicle simulation, automatic data
collection during the simulation, and final reporting and plotting of user-specified quantities
of interest.

4 Ground vehicle mobility simulations with Chrono::Vehicle

Chrono::Vehicle has been used extensively in many ground vehicle mobility studies, both
at the University of Wisconsin - Madison, by our external collaborators, and by external
Chrono users. Some typical simulations, involving both wheeled and tracked vehicles, are
illustrated in Fig. 9.

The simulation snapshot in Fig. 9a is an example of a standard mobility test on rigid flat
terrain. The double lane change in this demonstration used a 4WD wheeled vehicle with
Fiala tire models and a path-follower driver system with a constant-speed controller. The
relevant mobility metrics extracted from such a simulation include the maximum speed at
which the maneuver can be safely performed, accelerations at the driver location, and the
vehicle inputs generated by the closed-loop driver system.

Figure 9b is a snapshot from a step-climbing validation test for determining the
maximum obstacle height that can be managed by a tracked vehicle from rest. The vehicle
used in this test contains over 150 bodies and is modeled with single-pin track shoes and
linear-damper suspensions.

In conjunction with the Chrono::FSI module, Chrono::Vehicle has been used in fluid-
solid interaction problems to simulate fording maneuvers and sloshing of liquids in vehicle-
mounted tanks [13]. These simulations capture the two-way coupling between the vehicle
dynamics and the fluid phase, the latter being governed by the mass and momentum (Navier-
Stokes) equations discretized in space via SPH. The simulation illustrated in Fig. 9c involved



Chrono::Vehicle – Template-Based Ground Vehicle Modeling and Simulation 17

(a) Double-lane change maneuver. (b) Obstacle climbing test.

(c) Fording maneuver. (d) Simulating a convoy of autonomous vehicles.

Figure 9: Snapshots from various Chrono::Vehicle-enabled simulations.

a 4WD wheeled vehicle with a constant-speed controller negotiating a body of water and
fully accounts for the interaction between the fluid phase and the vehicle chassis and tires
(for collision detection purposes, the chassis and tire meshes were decomposed in sets of
convex hulls). This simulation used approximately 1.5 million SPH particles for the fluid
phase and was carried out with Chrono::Parallel using 40 OpenMP.

Figure 9d is a snapshot from a simulation with Chrono::CAVE implementing
functionality from Chrono::Vehicle, multiple agents, sensors, and a virtual world [3]. This
setup involves four vehicles simulated on separate network clients, all connected to a single
server. The lead vehicle is interactively driven and the three trailing vehicles are autonomous.
The latter are equipped with virtual LiDAR, GPS, and IMU sensors which are used in a
simple driver controller to follow the vehicle ahead. The outputs of these sensors are overlaid
(LiDAR on the left and GPS/IMU combined on the right) for the last vehicle in the convoy.

As examples of other types of simulations enabled by Chrono::Vehicle we mention
studies of wheeled vehicles with flexible tires on granular terrain [21, 24] to investigate the
effect of tire and terrain deformation on mobility metrics; and design of model predictive
controllers for obstacle avoidance on deformable terrain [8] to investigate controller
performance and robustness. Chrono::Vehicle is an integral part of the Mercury framework
for mobility simulation of wheeled ground vehicles [7].

5 Conclusions and future developments

We provided a brief overview of the Chrono::Vehicle library which provides support
for ground vehicle modeling, simulation, and visualization within the multi-physics
package Chrono. This module is designed in a modular manner, using a template-
based approach to allow rapid prototyping of existing and new vehicle configurations



18 author

and to facilitate its integration in third-party simulation frameworks. The simulation loop
in Chrono::Vehicle is structured such that it permits both monolithic coupled vehicle
simulations and co-simulation for large-scale vehicle–terrain–environment multi-physics
and multi-scale simulation.

Current and planned development involves inclusion of additional subsystem templates,
such as support for continuous rubber band tracked vehicles, as well as new capabilities,
primarily related to formalization of data collection, output of mobility metrics, and post-
processing.

Complex vehicle–terrain simulations, particularly those involving high-fidelity FEA-
based flexible tires, granular terrain, and multi-phase FSI problems, continue to pose serious
challenges, including the still considerable computational requirements. Plans for future
research and development in this area focus on leveraging hybrid parallel computing as
enabled by the interplay of Chrono::Distributed and Chrono::Parallel in a co-simulation
framework.

References

[1] N. B. Do, A. A. Ferri, and O. A. Bauchau. Efficient simulation of a dynamic system
with lugre friction. Journal of Computational and Nonlinear Dynamics, 2(4):281–289,
2007.

[2] ECMA. The JSON data interchange format. Technical Report ECMA-404, ECMA
International, 2013.

[3] A. Elmquist, D. Hatch, C. Ricchio, R. Serban, and D. Negrut. Virtual autonomous
vehicle testing via a Connected Autonomous Vehicle Emulator (CAVE). In
J. Michopoulos, D. Rosen, C. Paredis, and J. Vance, editors, Advances in Computers
and Information in Engineering Research. ASME Press, New York, 2017.

[4] FunctionBay. Recurdyn. http://eng.functionbay.co.kr. Accessed: 2015-
02-07.

[5] A. Gibbesch and B. Schafer. Multibody system modelling and simulation of planetary
rover mobility on soft terrain. In 8th International Symposium on Artificial Intelligence,
Robotics and Automation in Space (i-SAIRAS 2005), Munich, Germany, September,
pages 5–8, 2005.

[6] R. A. Gingold and J. J. Monaghan. Kernel estimates as a basis for general particle
methods in hydrodynamics. Journal of Computational Physics, 46(3):429–453, 1982.

[7] C. Goodin, J. Mange, S. Pace, T. Skorupa, D. Kedziorek, J. Priddy, and L. Lynch.
Simulating the mobility of wheeled ground vehicles with mercury. SAE Int. J. Commer.
Veh., 10(2), 2017.

[8] N. Haraus, R. Serban, and J. Fleischmann. Performance analysis of constant speed
local obstacle avoidance controller using an MPC algorithm on granular terrain. In
Ground Vehicle Systems Engineering and Technology Symposium, 2017.

[9] Irrlicht. Open Source 3D Irrlicht Engine. http://irrlicht.sourceforge.
net/, 2014.



Chrono::Vehicle – Template-Based Ground Vehicle Modeling and Simulation 19

[10] Khronos Group. Open Graphics Library - OpenGL. http://www.opengl.org/,
2014.

[11] R. Krenn and A. Gibbesch. Soft soil contact modeling technique for multi-body system
simulation. In Trends in computational contact mechanics, pages 135–155. Springer,
2011.

[12] J. Madsen. Validation of a Single Contact Point Tire Model Based on the
Transient Pacejka Model in the Open-Source Dynamics Software Chrono. Technical
Report TR-2014-16: http://sbel.wisc.edu/documents/TR-2014-16.
pdf, Simulation-Based Engineering Laboratory, University of Wisconsin-Madison,
2014.

[13] H. Mazhar, A. Pazouki, M. Rakhsha, P. Jayakumar, and D. Negrut. A differential
variational approach for handling fluid-solid interaction problems via Smoothed
Particle Hydrodynamics. Journal of Computational Physics (under review), 0:0, 2017.

[14] A. Mikkola. Lugre Tire Model for HMMWV. Technical Report TR-2014-
15: http://sbel.wisc.edu/documents/TR-2014-15.pdf, Simulation-
Based Engineering Laboratory, University of Wisconsin-Madison, 2014.

[15] I. Milne and G. Rowe. OGRE-3D program visualization for C++. In Proceedings of
the 3rd Annual LTSN-ICS Conference, 2002.

[16] MSC Software. ADAMS. http://www.mscsoftware.com/product/
adams. Accessed: 2015-02-07.

[17] MSC Software. ADAMS/Tire help - ADAMS 2015. https://simcompanion.
mscsoftware.com/infocenter/index?page=content&id=
DOC10813&cat=2015_ADAMS_DOCS&actp=LIST/, July 2015.

[18] Persistence of Vision Pty. Ltd. Persistence of Vision (TM) Raytracer. http://www.
povray.org, 2004.

[19] H. B. Pacejka. Tire and vehicle dynamics. Elsevier, 2005.

[20] A. Pazouki, M. Kwarta, K. Williams, W. Likos, R. Serban, J. Jayakumar, and D. Negrut.
Compliant versus rigid contact – a comparison in the context of granular dynamics.
Phys. Rev. E (under review), 0:0, 2017.

[21] A. M. Recuero, R. Serban, B. Peterson, H. Sugiyama, P. Jayakumar, and D. Negrut. A
high-fidelity approach for vehicle mobility simulation: Nonlinear finite element tires
operating on granular material. Journal of Terramechanics, 72:39 – 54, 2017.

[22] Project Chrono Development Team. Chrono: An Open Source Framework for
the Physics-Based Simulation of Dynamic Systems. https://github.com/
projectchrono/chrono. Accessed: 2017-05-07.

[23] Siemens PLM Software. Siemens Virtual.Lab. https://www.plm.
automation.siemens.com/en_us/products/lms/virtual-lab/.
Accessed: 2016-09-13.



20 author

[24] R. Serban, N. Olsen, D. Negrut, A. M. Recuero, and P. Jayakumar. A co-simulation
framework for high-performance, high-fidelity simulation of ground vehicle-terrain
interaction. In AVT-265: Integrated Virtual NATO Vehicle Development, Vilnius,
Lithuania, May 2017.

[25] A. A. Shabana and R. Y. Yakoub. Three dimensional absolute nodal coordinate
formulation for beam elements: Theory. ASME Journal of Mechanical Design,
123:606–613, 2001.

[26] J. C. Simo and L. Vu-Quoc. Three-dimensional finite-strain rod model. part ii:
Computational aspects. Computer Methods in Applied Mechanics and Engineering,
58:79–116, 1986.

[27] A. Tasora, R. Serban, H. Mazhar, A. Pazouki, D. Melanz, J. Fleischmann, M. Taylor,
H. Sugiyama, and D. Negrut. Chrono: An open source multi-physics dynamics engine.
In T. Kozubek, editor, High Performance Computing in Science and Engineering –
Lecture Notes in Computer Science, pages 19–49. Springer, 2016.

[28] M. Taylor. Implementation and validation of the Fiala tire model in Chrono. Technical
Report TR-2015-13: http://sbel.wisc.edu/documents/TR-2016-06.
pdf, University of Wisconsin–Madison, 2015.

[29] J. Y. Wong. Theory of Ground Vehicles. John Wiley & Sons, New York, 2001.

[30] J. Y. Wong and A. R. Reece. Prediction of rigid wheel performance based on the
analysis of soil-wheel stresses part i. performance of driven rigid wheels. Journal of
Terramechanics, 4(1):81–98, 1967.

[31] J. Y. Wong and A. R. Reece. Prediction of rigid wheel performance based on the
analysis of soil-wheel stresses: Part ii. performance of towed rigid wheels. Journal of
Terramechanics, 4(2):7–25, 1967.

[32] H. Yamashita, P. Jayakumar, and H. Sugiyama. Modeling of deformable tire and
soil interaction using multiplicative finite plasticity for multibody off-road mobility
simulation. In Proceedings of the ASME 2016 International Design Engineering
Technical Conferences and Computers and Information in Engineering Conference
IDETC/CIE 2016, 2016.


