
Chrono: An open source multi-physics dynamics
engine

Alessandro Tasora1, Radu Serban2, Hammad Mazhar2, Arman Pazouki2,
Daniel Melanz2, Jonathan Fleischmann2, Michael Taylor2,

Hiroyuki Sugiyama3, and Dan Negrut2�

1 University of Parma, Italy
2 University of Wisconsin–Madison, USA

3 University of Iowa, USA

Abstract. We provide an overview of a multi-physics dynamics engine
called Chrono. Its forte is the handling of complex and large dynamic sys-
tems containing millions of rigid bodies that interact through frictional
contact. Chrono has been recently augmented to support the modeling
of fluid-solid interaction (FSI) problems and linear and nonlinear finite
element analysis (FEA). We discuss Chrono’s software layout/design and
outline some of the modeling and numerical solution techniques at the
cornerstone of this dynamics engine. We briefly report on some valida-
tion studies that gauge the predictive attribute of the software solution.
Chrono is released as open source under a permissive BSD3 license and
available for download on GitHub.

Keywords: multi-physics modeling and simulation, rigid and flexible
multi-body dynamics, friction and contact, fluid-solid interaction, gran-
ular dynamics, vehicle dynamics, parallel computing

1 Overview of Chrono and its Software Infrastructure

Chrono is an open source software infrastructure used to investigate the time evo-
lution of systems governed by very large sets of differential-algebraic equations
and/or ordinary differential equations and/or partial differential equations [?,?].
Chrono can currently be used to simulate (i) the dynamics of large systems of
connected bodies governed by differential-algebraic equations; (ii) controls and
other first-order dynamic systems governed by ordinary differential equations;
(iii) fluid–solid interaction problems governed, in part, by the Navier-Stokes
equations; and (iv) the dynamics of deformable bodies governed by partial differ-
ential equations. Chrono can handle multi-physics problems in which the solution
calls for the mixing of (i) through (iv).

This dynamics simulation engine rests on five foundation components that
provide the following basic functionality: equation formulation, equation solu-
tion, collision detection and proximity computation, support for parallel comput-
ing, and pre/post-processing, see Fig. 1. The first foundation component, called

� Corresponding Author: negrut@wisc.edu

Fig. 1: An abstraction of the Chrono architecture. Chrono provides support
for three application areas, namely multibody dynamics (MBD), FEA, and
FSI, building on a five component foundation that handles the formulation
of the equation of motion, numerical solution, collision detection, parallel
and high-performance computing support, and pre/post processing tasks. An
API (in blue) allows expert users to interact with Chrono. Toolkits such as
Chrono::Vehicle, Chrono::Granular, etc. provide a low-entry point for users who
need domain-specific Chrono support.

Equation Formulation, supports general-purpose modeling for large systems of
rigid and flexible bodies and for basic FSI problems. The second component,
called Equation Solution, provides the algorithmic support needed to numeri-
cally solve the resulting equations of motion. Proximity computation support,
essential for collision detection and computation of short range interaction forces,
is provided by the third foundation component. The fourth component enables
the partitioning and farming out of very large dynamics problems for parallel
execution on supercomputer architectures using the Message Passing Interface
(MPI) paradigm [?]. The fifth component provides pre- and post-processing sup-
port.

Chrono is almost entirely written in C++. It is compiled into a library sub-
sequently used by third party applications. A user can invoke functions imple-
mented in Chrono via an Application Programming Interface (API) that comes in
two options: C++ and Python. Chrono runs on Windows, Linux, and Mac OSX
and is designed to leverage parallel computing. Depending on the solution mode
in which it operates, it can rely on parallel computing on Graphics Processing
Unit (GPU) cards using CUDA [?], multi-core computing using OpenMP [?],
and multi-node parallel computing using MPI [?].

Chrono has been validated against experimental data, analytical results, and
commercial software. Two correlation studies against MSC.ADAMS are sum-
marized in [?,?]. The gradient-deficient beams and plates in Chrono::FEA have
been validated against the commercial code ABAQUS [?]. The frictional-contact
solution in Chrono has been validated against experimental data for angle of re-
pose simulations [?], rate of flow [?, ?], impact tests [?, ?], and shear tests [?].
Finally, the fledgling Chrono::FSI module has been validated against analytical
results and experimental data [?].

Chrono has been used for tracked and wheeled vehicle dynamics, in robotics
(optimization and design of parallel kinematics machines), in the field of seis-
mic engineering (simulation of earthquake effects on ancient buildings), in the
field of waste processing (granular flows in separation machines), in additive
manufacturing and 3D printing (see Figs. 2a and 2b), to simulate new types of
escapements in mechanical clocks, and to characterize ice sheet dynamics for
the oil industry. Approximately 150 movies that illustrate simulations run in
Chrono are available at [?,?].

In terms of user support, the API documentation for the main Chrono mod-
ules is generated from their annotated C++ sources using Doxygen [?]. All
Chrono software is configured and built using CMake [?] for a robust cross-
platform build experience under Linux, Mac OSX, and Windows. Unit testing
relies on the CTest suite of tools [?] to automate configuring, building, and ex-
ecuting the tests. Chrono operates under a continuous integration mode based
on Buildbot [?]. Results and output from all builds, tests, and benchmarks are
recorded to an external database accessible to all developers.

2 Rigid Body Dynamics Support in Chrono

The dynamics of articulated systems composed of rigid and flexible bodies is
characterized by a system of index 3 Differential Algebraic Equations (DAEs)
[?,?,?] shown using the terms in black font in Eqs. (1a)–(1c):

q̇ = L(q)v (1a)

M(q)v̇ = f (t,q,v)− gT
q (q, t)λ̂ +

∑
i∈A(q,δ)

(γ̂i,nDi,n + γ̂i,uDi,u + γ̂i,wDi,w)︸ ︷︷ ︸
ithfrictional contact force

(1b)

0 = g(q, t) (1c)

i ∈ A(q(t)) :

0 ≤ Φi(q) ⊥ γ̂i,n ≥ 0
(γ̂i,u, γ̂i,w) = argmin√

γ̄2
i,u+γ̄2

i,w≤µiγ̂i,n

vT · (γ̄i,uDi,u + γ̄i,wDi,w) . (1d)

The differential equations in (1a) relate the time derivative of the generalized
positions q and velocities v through a linear transformation defined by L(q).
The force balance equation in (1b) ties the inertial forces to the applied and

constraint forces, f (t,q,v) and −gT
q (q, t)λ̂, respectively. The latter are imposed

by bilateral constraints that restrict the relative motion of the rigid or flexible
bodies present in the system. These bilateral constraints, which lead to Eq. (1c),
can be augmented by unilateral constraints associated with contact/impact phe-
nomena. To that end, the concept of equations of motion is extended to employ
differential inclusions [?]. The simplest example is that of a body that interacts
with the ground through friction and contact, when the equations of motion be-
come an inclusion Mq̈−f ∈ F(q, t), where M is the inertia matrix, q̈ is the body
acceleration, f is the external force, and F(q, t) is a set-valued function. The in-
clusion states that the frictional contact force lies somewhere inside the friction
cone, with a value yet to be determined and controlled by the stick/slip state of
the interaction between body and ground. In MBD the differential inclusion can
be posed as a differential variational inequality problem [?], which brings along
the red-font terms in Eq. (1) [?,?,?,?,?,?]. Specifically, the unilateral constraints
define a set of contact complementarity conditions 0 ≤ Φi(q)⊥ γ̂i,n ≥ 0, which
make a simple point: for a potential contact i in the active set, i ∈ A(q(t)),
either the gap Φi between two geometries is zero and consequently the normal
contact force γ̂i,n is greater than zero, or vice versa. The last equation poses an
optimization problem whose first order Karush-Kuhn-Tucker optimality condi-
tions are equivalent to the Coulomb dry friction model [?]. The frictional contact
force associated with contact i leads to a set of generalized forces, shown in red
in Eq. (1b), which are obtained using the projectors Di,n, Di,u, and Di,w [?].

The modeling methodology outlined above has been used in Chrono to an-
alyze the dynamics of large multibody systems and granular material in a so
called Discrete Element Method (DEM) framework. Since the methodology uses
complementarity (C) conditions to enforce non-penetration of the discrete el-
ements that come in mutual contact, this method is called DEM-C. This dif-

ferentiates it from DEM-P, a penalty (P) based methodology that is also im-
plemented in Chrono and which accounts for the partial deformation of the
bodies in mutual contact. Chrono, in its DEM-C embodiment that draws on
Eq. (1), is shown at work in conjunction with two additive manufacturing pro-
cesses in Fig. 2. Several frames of the Selective Laser Sintering (SLS) layering
process simulations for various translational speeds are juxtaposed in 2(a). The
model consists of 1 300 000 rigid spheres with an average diameter of 55µm and
a density of 930 kg/m3 [?]. The radius of the powder particles was randomly
distributed using a normal distribution. A roller with a diameter of 0.0762 m
travels at various longitudinal speeds and rotates at a rate of 3.33 rad/s. An
approximate equation tally is as follows: close to eight million from (1a), the
same count for (1b), and almost no equations for (1c). In (1d), there are ap-
proximately 7.8 million contact complementarity conditions for the normal force
and, because the problem accounts for normal, sliding, rolling and spinning of
the bodies, there are six Lagrange multipliers for each contact. The optimization
problem that provided the frictional contact forces for this simulation was posed
in approximately 46.8 million variables and solved in Chrono using a methodology
proposed in [?,?]. The handling of the rolling and spinning friction is described
in [?]. The image in Fig. 2(b) shows a frame of a folding simulation that is a
key step in predicting where each component of a dress is located inside the 3D
printing volume. The position and orientation of each element is passed to the
3D printer which then prints the entire dress. The chain-mail dress is made up
of 40 760 rigid rings and 55 clasps collapsing into a 10 × 10 × 10 in3 printing
volume [?].

(a) Chrono simulation of SLS layering
process. (b) Chrono simulation of dress folding.

Fig. 2: Left – frames of the SLS layering process simulations for various translational
speeds. Right – a frame of a folding simulation used in the 3D printing of a dress.

When using the DEM-P approach, or soft-body approach, Chrono regards
the contacting bodies are “soft” in the sense that they are allowed to “overlap”
or experience local deformation before a corrective contact force is applied at the
point of contact. Once such an overlap δn is detected, by any one of a number of

contact algorithms, contact force vectors Fn and Ft normal and tangential to the
contact plane at the point of contact are calculated using various constitutive
laws [?, ?, ?] based on the local body deformation at the point of contact. In
the contact-normal direction, n, this local body deformation is defined as the
penetration (overlap) of the two quasi-rigid bodies, un = δnn. In the contact-
tangential direction, the deformation is defined as a vector ut that tracks the
total tangential displacement of the initial contact points on the two quasi-rigid
bodies, projected onto the current contact plane, as shown in Fig. 3.

Fig. 3: DEM-P contact model, with normal overlap distance δn, contact-normal
unit vector n, and tangential displacement vector ut in the plane of contact (top),
and a Hookean-linear contact force-displacement law with constant Coulomb
sliding friction (bottom).

An example of a DEM-P contact constitutive law, a slightly modified form
of which is used in Chrono, is the following viscoelastic model based on either
Hookean or Hertzian contact theory:

Fn = f(R̄, δn) (knun − γnm̄vn)

Ft = f(R̄, δn) (−ktut − γtm̄vt) ,
(2)

where u = un+ut is the overlap or local contact displacement of two interacting
bodies. The quantities m̄ = mimj/(mi+mj) and R̄ = RiRj/(Ri+Rj) represent
the effective mass and effective radius of curvature, respectively, for contacting
bodies with masses mi and mj and contact radii of curvature Ri and Rj . The
vectors vn and vt are the normal and tangential components of the relative ve-
locity at the contact point. For Hookean contact, f(R̄, δn) = 1 in Eq. (2); for

Hertzian contact, one can let f(R̄, δn) =
√
R̄δn [?,?,?]. The normal and tangen-

tial stiffness and damping coefficients kn, kt, γn, and γt are obtained, through
various constitutive laws derived from contact mechanics, from physically mea-
surable properties for the materials of the contacting bodies, such as Young’s

modulus, Poisson’s ratio, the coefficient of restitution, etc. Detailed descriptions
of the DEM-P contact models implemented in Chrono, as well as alternative
DEM-P contact models, are provided in [?].

The component of the contact displacement vector u in the contact-normal
direction, un = δnn, is obtained directly from the contact detection algorithm,
which provides the magnitude of the “inter-penetration” δn between the bodies.
The tangential contact displacement vector ut is formulated as

ut =

∫ t

t0

vtdt−
(
n ·
∫ t

t0

vt dt

)
n , (3)

where t is the current time and t0 is the time at the initiation of contact [?].
For the true tangential contact displacement history model, the vector ut must
be stored and updated at each time step for each contact point on a given pair
of contacting bodies from the time that contact is initiated until that contact is
broken. On the importance of tangential contact displacement history in DEM-P
contact models, see [?].

To enforce the Coulomb friction law, if |Ft| > µ|Fn| at any given time step,
then before the contributions of the contact forces are added to the resultant force
and torque on the body, the (stored) value of |ut| is scaled so that |Ft| = µ|Fn|,
where µ is the Coulomb (static and sliding) friction coefficient. For example, if
f(x) = 1 in Eq. (2), then

kt|ut| > µ|Fn| ⇒ ut ← ut
µ|Fn|
kt|ut|

. (4)

Once the contact forces Fn and Ft are computed for each contact and their
contributions are summed to obtain a resultant force and torque on each body in
the system, the time evolution of each body in the system is obtained by integrat-
ing the Newton-Euler equations of motion, subject to the Courant-Friedrichs-
Lewy (CFL) stability condition, which limits [?] the integration time step-size
to h < hcrit ∼

√
mmin/kmax.

For multibody dynamics without frictional contact, or with frictional contact
modeled using a penalty approach, Chrono implements index 3 DAE solutions
[?,?]. For handling frictional contact within the differential variational inequality
framework, Chrono implements a variant of the Nesterov algorithm [?]. Handling
of cohesion is based on the an approach described in [?].

3 Flexible Body Dynamics Support in Chrono

Chrono implements flexible body dynamics support for problems in which bod-
ies are expected to sustain large deformations that take place while the body
might experience large translational and/or rotational accelerations. The cur-
rent implementation does not support the so-called floating-frame-of-reference,
modal, approach, in which the small deformation of the body is superimposed
on top of a large reference motion, see for instance [?]. For large deformations,

Chrono currently resorts to the Absolute Nodal Coordinate Formulation (ANCF)
for structural elements such as beams, plates, and shells and a corotational (CR)
approach for both structural and volumetric elements.

3.1 Nonlinear Finite Element Analysis via the Absolute Nodal
Coordinate Formulation

ANCF has proven to be successful in solving various challenging engineering
problems of complex multibody systems including cables, belt drives, rotor
blades, leaf springs, tires and many others [?,?,?,?]. In this finite element formu-
lation, the large rotation and deformation of the element are parameterized by
the global position vector gradients, and no rotational nodal coordinates such
as Euler angles are utilized. This parameterization leads to a constant mass
matrix for fully nonlinear dynamic problems while ensuring the exact modeling
of rigid body reference motion [?]. Using the polar decomposition theorem, the
displacement gradient tensor can be decomposed into the orthogonal rotation
matrix and the stretch tensor that describes the most general six deformation
modes. That is, use of the position vector gradient coordinates allows for describ-
ing the rotation and deformation within the element, thereby circumventing the
complex nonlinear coupling of the rotation and deformation coordinates that
appears in the inertia terms of flexible body models using rotational parameter-
ization. The constant mass matrix of large deformable bodies not only leads to
efficient solutions in nonlinear dynamics simulation, but also allows for the use of
the non-incremental solution procedures utilized in general multibody dynam-
ics computer algorithms. Using these important features and general motion
description employed in ANCF, the structural beam and plate/shell elements
can be implemented in the general multibody dynamics computer algorithms of
Chrono without resorting to ad hoc co-simulation procedures. In what follows,
the beam and plate/shell elements implemented in Chrono are summarized and
important features of these elements are highlighted.

Thin Beam Element. The beam element implemented in Chrono is suited
for modeling thin beam structures such as cables and belt drives, in which the
transverse shearing effect of the beam cross section is considered negligible. The
global position vector of the two-node ANCF Euler-Bernoulli beam element i on
the centerline is defined by [?]

ri = Si(xi)ei , (5)

where Si is the element shape function matrix obtained by the cubic Hermite
polynomial [?], xi is the element axial coordinate, and ei is the nodal coordinate
vector of element i. Node j of element i has the global position vector rij and
global position vector gradient vector ∂rij/∂xi that is tangent to the beam
centerline as follows [?]:

eij =

[(
rij
)T (∂rij

∂xi
)T]T

. (6)

Using the Euler-Bernoulli beam theory (i.e., the beam cross section remains
planar and normal to the bean centerline), the virtual work of the elastic forces
can be obtained as

δW i = EA

∫
xi

δεiεidxi + EI

∫
xi

δκiκidxi = δei
T
Qi
k , (7)

where EA and EI are, respectively, the axial and flexural rigidity; εi and ki are
the axial strain and the curvature, respectively [?]. Notice here that this element
does not account for pure torsion since rotation about the gradient vector is not
considered. For this reason, this element is also called cable element [?,?]. Using
the principle of virtual work in dynamics, the equations of motion of the ANCF
beam element are written as

Miëi = Qi
k + Qi

e , (8)

where Qi
k is the vector of generalized element elastic forces, Qi

e is the vector of
generalized element external forces, and Mi is the constant element mass matrix
defined by

Mi =

∫
xi

ρiAi(Si)TSidxi , (9)

where ρi is the material density and Ai is the cross section area.

Thin Plate Element. There are two types of plate/shell elements in Chrono;
the 4-node Kirchhoff thin plate element and the 4-node shear deformable shell
element. In the thin plate element, the global position vector of a point in the
middle plane of the plate element is defined by

ri = Si(xi, yi)ei , (10)

where Si(xi, yi) is the element shape function matrix obtained by the incomplete
cubic polynomials [?, ?]; xi and yi are the element coordinates in the middle
plane. The nodal coordinates are defined as

eij =

[(
rij
)T (∂rij

∂xi
)T (∂rij

∂yi
)T]T

. (11)

Using the Kirchhoff-Love plate theory (i.e., the plate section remains planar
and normal to the middle surface), the virtual work of the elastic forces can be
obtained as [?,?]

δW i =

∫
V i

δεi
T

DiεidV i +

∫
Ai

δκi
T

Di
bκ

idAi = δei
T
Qi
k , (12)

where εi = [εixx εiyy γixy]T ; κi = [κixx κiyy 2κixy]T ; Di and Di
b are the

elasticity matrices [?,?]. The in-plane strains and curvatures are defined as

εixx =
1

2

((
∂ri

∂xi

)T(
∂ri

∂xi

)
− 1

)

εiyy =
1

2

((
∂ri

∂yi

)T(
∂ri

∂yi

)
− 1

)

γixy =

(
∂ri

∂xi

)T(
∂ri

∂yi

)
(13)

and

κixx = ni
T ∂2ri

∂xi2
, κiyy = ni

T ∂2ri

∂yi2
, κixy = ni

T ∂2ri

∂xi∂yi
, (14)

where the vector ni is a unit normal to the middle plane defined by (∂r
i

∂xi ×
∂ri

∂yi)/| ∂r
i

∂xi × ∂ri

∂yi |.
Shear Deformable Shell Element. In the shear deformable shell element

that can be applied to thick shell structures with various material models, the
global position vector of an arbitrary point in element i is defined by

ri = Si(xi, yi, zi)ei , (15)

where Si is the element shape function matrix obtained by the bi-linear polyno-
mials [?,?]. The preceding equation can be expressed as a sum of the displace-
ment on the middle surface rim and the displacement on the cross section as
ri = rim(xi, yi) + zi∂ri/∂zi(xi, yi). zi is the element coordinate along the shell
thickness. The nodal coordinates are defined as [?,?].

eij =

[(
rij
)T (∂rij

∂zi
)T]T

. (16)

The virtual work of the elastic forces can then be obtained as [?]

δW i =

∫
V i
0

δεi
T ∂W i(ε̂i)

∂εi
dV i0 = δei

T
Qi
k , (17)

where dV i0 is the infinitesimal volume at the initially curved reference configura-
tion of element i, and W i is an elastic energy density function. Due to the ele-
ment lockings exhibited in this element, locking remedies need to be introduced
to ensure the element convergence and accuracy. The lockings in the bi-linear
shell element include the transverse shear locking; Poisson’s thickness locking;
curvature thickness locking; and in-plane shear locking. These lockings are sys-
tematically eliminated by applying the assumed natural strain method [?,?] and
the enhanced assumed strain method [?,?]. By applying these locking remedies,
the Green-Lagrange strain vector is defined as

ε̂i = (Ti)−T ε̃i + εi,EAS , (18)

where ε̃i is the covariant strain vector obtained from the covariant strain tensor
given by:

Ẽi =
1

2

(
(J̄i)T J̄i − (Ji)TJi

)
. (19)

In the preceding equation, J̄i = ∂ri/∂xi, Ji = ∂Xi/∂xi and xi = [xi yi zi],
and Xi represents the global position vector of element i at an initially curved
reference configuration. The transformation matrix Ti is as given in literature [?].
The assumed strain approach is introduced to the covariant transverse normal
and transverse shear strains as follows:

ε̃i = [ε̃xx ε̃yy γ̃xy ε̃ANSzz γ̃ANSxz γ̃ANSyz]T . (20)

The enhanced assumed strain method is applied to the in-plain strains and
transverse normal strain as follows:

εi,EAS = [εEASxx εEASyy γEASxy εEASzz 0 0]T . (21)

It is important to note here that nonlinear constitutive models can be considered
in a way same as solid elements. Using the principle of virtual work in dynamics,
the equations of motion of the shear deformable shell element i can be expressed
as

Miëi = Qi
k(ei,αi) + Qi

e(e
i, ėi, t) , (22)

where vectors Qi
k and Qi

e are, respectively, vectors of the element elastic forces
and external forces; and the matrix Mi is the constant element mass matrix
defined by [?]

Mi =

∫
V i
0

ρi0(Si)TSidV i0 , (23)

where ρik0 is the material density at the reference configuration. The internal
parameters αi in Eq. 22, which are introduced to define the enhanced assumed
strain field, are determined by solving the following equations [?,?]∫

V i
0

(
∂εi,EAS

∂αi

)T
∂W i(ε̂i)

∂εi
dV i0 = 0 . (24)

The equations above can be solved at element level for the unknown internal
parameters using the procedure presented in the literature [?].

3.2 Nonlinear Finite Element Analysis via the Corotational
Approach

The CR approach, see for instance [?,?,?], can be regarded as an augmentation
of the classic linear finite element analysis, of whom it inherits the fundamental
functions for computing the stiffness matrices and the internal forces. This fosters
the reuse of finite element algorithms and theories whose behavior in the linear
field are already well known and tested. Yet, the paradigm reuse comes at a cost:

although displacements and rotations can be arbitrarily large, the CR framework
requires that the strains must be small. In fact the CR concept is based on the
idea that large deformations in beams, shells, etc., can be seen as local rigid body
motions of finite elements, to whom small deformations can be superimposed -
hence the possibility of using linear FEA formulations locally for the co-rotated
elements.

Chrono uses the CR approach to model large deformations in meshes of 3D
elements such as tetrahedrons and hexahedrons, as well as in beams discretized
with classical elements such as Euler-Bernoulli beams. Fig. 4 shows the concept
of the corotational formulation as implemented in Chrono. Although the figure
shows a beam, it applies equally well to tetrahedrons and other elements. We
introduce an auxiliary floating coordinate system F per each element, and require
that the coordinate system follows the deformed element. For a proper choice
of F position update, the overall gross motion from the undeformed state into
the deformed state CD can be seen as the superposition of a large rigid body
motion from the reference configuration C0 to the so called floating or shadow
configuration CS , plus a local small-strain deformation from CS to CD.

S

D

0C

C

C

A

B

A

B
F0

F

0

0

xB0

dB

dB

xB

Wx

Wy

Wz

W

Fig. 4: The corotational finite element concept demonstrated in conjunction with
a 3D beam element. For each finite element there is a floating frame F .

The idea of the corotational approach is that one can compute the global
tangent stiffness Ke and a global force fe for each element e, given its local
K, its local f and the rigid body motion of the frame F in C0 to F in CS .
When the element moves, the position and rotation of F is updated. In the case
of beams, to avoid dependence on connectivity we place the origin of F in the
midpoint of the AB segment, as xF = 1

2 (xB − xA), and align its X axis with
xB − xA. The remaining Y and Z axes of F are obtained via a Gram-Schmidt
orthogonalization, enforcing Y to bisect the Y axes of A and B when projected
on the plane orthogonal to X. In case of tetrahedrons, the F frame is placed
in the barycenter of the tetrahedron, and the alignment of the three axes is
obtained using a polar decomposition that minimizes the displacement of the
nodes with respect to the rotated F as described in [?].

The matrix K and the vector f
in

are evaluated using the classical theory
for linear finite elements, since both are expressed in local coordinates. Then,
both are transformed from the local to the global coordinates using the ap-
proach outlined in [?]. For the most part, this amounts to performing rotation
transformations to the rows and columns corresponding to 3D nodes of K and
f
in

, where the rotation matrix is the 3×3 matrix that contains the rotation of
the floating coordinate system F . However, for completeness the mentioned ap-
proach also computes additional terms, especially the geometric stiffness matrix.
Following [?] and [?] we also use projectors that filter the rigid body motion and
that improve the consistency and the convergence of the method.

Fig. 5 pertains one of the benchmarks performed to validate the methodology.
This is the so called Princeton beam experiment for which ample experimental
results are available in the literature [?, ?]. In this numerical experiment thin
beams were each modeled with ten Euler-Bernoulli corotational beam elements.
A force was applied to the tip, with increasing magnitude and inclination with
respect to the vertical. Because of the diagonal nature of the force, beams are
bent and slightly twisted. If a simple linear analysis were used, the twisting
effect would not take place. Results, presented in Fig. 6, show that there is good
agreement with experimental results and with other third party software; i.e.,
Dymore and MBDyn [?,?].

P

θ

θ 0° 90° 45°

P=4.45 [N]

P=8.89 [N]

P=13.34 [N]

Fig. 5: Non-linear static analysis of the Princeton beam experiment, at different
load magnitudes and θ angles.

0 15 30 45 60 75 90
0

1

2

3

4

5

Loading angle θ [deg]

T
w

is
t a

ng
le

 [
de

g]

P=13.34 [N]

P=8.89 [N]

P=4.45 [N]

Experimental
Dymore, MBDyn
C::E Euler-Bernoulli

Fig. 6: Results from the non-linear analysis of the Princeton beam experiment.

4 Fluid–Solid Interaction Support in Chrono

In a Lagrangian framework, the continuity and momentum equations associated
with the fluid dynamics assume the form of Ordinary Differential Equations
(ODE) [?]

Dρ

dt
= −ρ∇·v (25a)

Dv

dt
= −1

ρ
∇p+

µ

ρ
∇2v + f , (25b)

where µ is the fluid viscosity, ρ is fluid density, v and p are the flow velocity and
pressure, respectively, and f is the body force. Assuming a Newtonian and in-

compressible flow, the first equation translates either in
Dρ

dt
= 0, or equivalently,

imposing a divergence-free flow condition, in ∇·v = 0.
The approach embraced in Chrono for the spatial discretization of the Navier-

Stokes equations draws on the Smoothed Particle Hydrodynamics (SPH) method-
ology [?,?], a meshless method that dovetails well with the Lagrangian modeling
perspective adopted for the dynamics of the solid phase. The term smoothed in
SPH refers to the approximation of point properties via a smoothing kernel
function W , defined over a support domain S. This approximation reproduces
functions with up to second order accuracy, provided the kernel function: (i)
approaches the Dirac delta function as the size of the support domain tends
to zero, that is limh→0W (r, h) = δ(r), where r is the spatial distance and h
is a characteristic length that defines the kernel smoothness; (ii) is symmetric,
i.e., W (r, h) = W (−r, h); and (iii) is normal, i.e.,

∫
S
W (r, h)dV = 1, where dV

denotes the differential volume. The term particle in SPH terminology indicates
the discretization of the domain by a set of Lagrangian particles. To remove
the ambiguity caused by the use of the term rigid particles in the context of
FSI problems, the term marker is used herein to refer to the SPH discretization
process. Each marker a has mass ma associated with the representative volume
dV and carries all of the essential field properties. As a result, any field property
at a certain location is shared and represented by the markers in the vicinity of
that location [?]. Within this framework, Eqs. (25a) and (25b) are discretized at
an arbitrary location xa within the fluid domain as [?]:

dρa
dt

= ρa
∑
b

mb

ρb
(va − vb) ·∇aWab (26a)

dva
dt

= −
∑
b

mb

[(
pa
ρa2

+
pb
ρb2

)
∇aWab −

(µa + µb)xab·∇aWab

ρ̄2
ab(x

2
ab + εh2)

vab

]
+ fa ,

(26b)

which are followed by
dxa
dt

= va , (27)

to update the location of discretization markers. In the above equations, quan-
tities with subscripts a and b are associated with markers a and b, respectively;
xab = xa − xb, vab = va − vb, Wab = W (xab, h), ρ̄ab is the average density of
markers a and b, ∇a is the gradient with respect to xa, i.e., ∂/∂xa, and ε is
a regularization coefficient to prevent infinite reaction between markers sharing
the same location.

The current SPH implementation in Chrono relies on a weakly compressible
model, namely Eq. (26a) followed by a equation of state to update pressure p [?]:

p =
c2sρ0

γ

{(
ρ

ρ0

)γ
− 1

}
. (28)

In this equation, ρ0 is the reference density of the fluid, γ tunes the stiffness of
the pressure-density relationship, and cs is the speed of sound. The value cs is
adjusted depending on the maximum speed of the flow, Vmax, to keep the flow
compressibility below some arbitrary value. Typically, γ = 7 and cs = 10Vmax,
which allows 1% flow compressibility [?].

Two additional refinements are adopted to improve the convergence proper-
ties of the weakly compressible SPH implementation. In the first adjustment,
an extended SPH approach (XSPH) [?] is employed to modify the individ-
ual markers velocity based on collective; i.e., Eulerian, velocities. This regu-
larization prevents excessive marker overlaps. The second modification is a re-
initialization technique [?] which ensures consistency between marker densities
updated through Eq. (26a) and those obtained directly from ρa =

∑
b

mbWab.

The implementation details and algorithms can be found in [?,?].

Several methods are proposed to enforce a fixed or moving solid boundary
[?, ?, ?, ?, ?]. In our previous work, we used an approach based on so-called
Boundary Condition Enforcing (BCE) markers, which are distributed on the
rigid [?] or flexible [?] bodies to capture the FSI interactions. At the fluid-solid
interface, each BCE marker captures an interaction force due to its inclusion in
the proximity of the nearby fluid markers through Eqs. (26). Two approaches
were implemented to update the velocity and pressure of a BCE marker. In the
first approach, the marker velocity is replaced by the local velocity of the moving
boundary, while the pressure relies on a projection from the fluid domain [?]. In
the second approach, the velocity of each BCE marker is calculated so that when
combined with the fluid contribution, it results in the assigned wall velocity;
additionally, BCE pressure is obtained from a force balance at the boundary.
We showed that the second approach performs better in imposing the no-slip
condition, particularly when the external body force is significant [?].

To achieve the computational efficiency required for complex multi-physics
simulations, we adopted a parallel programming approach relying on GPU com-
puting [?]. The resulting computational framework has been leveraged to inves-
tigate FSI problems in rigid body/particle suspension [?], three-way interaction
of fluid, rigid, and flexible components [?], and microfluidic sorting of microtis-
sues [?]. Fig. 7 shows a snapshot of a simulation that involves immersed rigid

and flexible components, where an ANCF method (see Section 3.1) is used to
simulate the flexible beams.

(a) (b)

Fig. 7: GPU simulation of the flow of rigid bodies within an array of flexible
beams. For a clear visualization, only parts of the domain are shown in each
picture: (a) rigid bodies, flexible beams, and fluid flow; (b) rigid bodies and
flexible beams only (fluid not rendered). The velocity field is color-coded: from
zero (blue) to maximum (red), with V fluidmax = 0.045 m/s, V rigidmax = 0.041 m/s,
and V beammax = 0.005 m/s.

5 Chrono Toolkits

A Chrono toolkit is a set of pre- and post-processing utilities that encapsu-
late domain expertise and provide a low entry point to Chrono by capturing
expert knowledge in ready-to-use generic modeling templates in a focused re-
search/application area. For instance, Chrono::Vehicle provides a collection of
subsystem templates that can be quickly used to assemble a typical vehicle.

Chrono::Vehicle and Chrono::Granular are currently available and discussed
herein. Chrono::Robotics and Chrono::Terramechanics are being developed.

5.1 Chrono::Vehicle

Available as an optional Chrono module, Chrono::Vehicle provides support for
modeling, simulation, and visualization of ground vehicle systems. Modeling of
vehicle systems is done in a modular fashion, with a vehicle defined as an as-
sembly of instances of various subsystems (suspension, steering, driveline, etc.).
Flexibility in modeling is provided by adopting a template-based design. In
Chrono::Vehicle templates are parameterized models that define a particular im-
plementation of a vehicle subsystem. As such, a template defines the basic mod-
eling elements (bodies, joints, force elements), imposes the subsystem topology,
prescribes the design parameters, and implements the common functionality for

a given type of subsystem (e.g., suspension) particularized to a specific tem-
plate (e.g., double wishbone). The following vehicle subsystems and associated
templates are available:

suspension: double wishbone, reduced double wishbone (with the A-arms
modeled as distance constraints), multi-link, solid-axle, walking-beam;

steering: Pitman arm, rack-and-pinion;
anti-roll bar: two-body, rotational spring-damper-based anti-roll bar;
driveline: 2WD shaft-based, 4WD shaft-based; these templates are based on

specialized Chrono modeling elements, named ChShaft, with a single rota-
tional degree of freedom and various shaft coupling elements (gears, differ-
entials, etc.);

wheel: in Chrono::Vehicle, a wheel only carries additional mass and inertia
appended to the suspension’s spindle body and, optionally, visualization in-
formation;

brake: simple brake (constant torque modulated by the driver braking input).

Fig. 8 illustrates the representation of a wheeled vehicle as an assembly of in-
stances of various subsystem templates (here using double wishbone suspensions
both in the front and rear and a Pitman-arm steering mechanism).

For additional flexibility and to facilitate inclusion in larger simulation frame-
works, Chrono::Vehicle allows formally separating various systems (the vehicle
itself, powertrain, tires, terrain, driver) and provides the inter-system communi-
cation API for a co-simulation framework based on force-displacement couplings.
For consistency, these systems are themselves templatized:

vehicle: a collection of references used to instantiate templates for its consti-
tutive subsystems;

powertrain: shaft-based template using an engine model based on speed-
torque curves, torque converter based on capacity factor and torque ratio
curves, and transmission parameterized by an arbitrary number of forward
gear ratios and a single reverse gear ratio;

tire: rigid tire (based on the Chrono rigid contact model), Pacejka, and a LuGre
friction tire model;

driver: interactive driver model (with user inputs from keyboard for real-time
simulation), file-based driver model (interpolated driver inputs as functions
of time).

Tire models supported in Chrono::Vehicle can be broken down into two cat-
egories: (i) a set of well developed traditional models, and (ii) a FEA-based
tire model actively under development. In the first category, three tire models
are currently supported: a rigid tire model, a tire model based on the LuGre
friction model, and single contact point Pacejka tire model. The rigid tire model
leverages the collision detection and frictional contact support in Chrono by us-
ing tires with user-specified geometry and contact material properties which are
then treated like any other collision geometry within Chrono. The LuGre tire
model described in [?] is based on a lumped brush-based LuGre friction model.

(a)

(b)

Fig. 8: A two-axle, independent suspension vehicle model: (a) diagram of the
component subsystems in the vehicle assembly; (b) a possible realization in
Chrono::Vehicle (in this particular case, using double wishbone suspensions, a
Pitman-arm steering mechanism, and a 4WD driveline subsystem – the latter
has no graphical representation in Chrono::Vehicle). The image on the left also
illustrates the data exchange between the vehicle system and associated systems
(powertrain, tires, etc.)

The tire is broken down into a user specified number of identical, connected two
dimensional disks. For each disk, a normal force is calculated based on the disk–
ground penetration distance and velocity; the lateral and longitudinal forces
are calculated by integrating the differential equations for the friction force in
each direction with no coupling between the lateral and longitudinal directions.
The forces are then summed across all the disks and the resulting force is then
transformed and applied to the wheel center. The third traditional tire model
is a Pacejka-based formulation described in [?]. This model is a modification of
the 2013 ADAMS/Tire PAC2002 non-linear transient tire model without belt
dynamics, valid for tire responses up to approximately 15Hz. In the second cat-
egory, a high-fidelity deformable tire model based on ANCF (see Section 3.1)
is implemented in Chrono. The fiber reinforced rubber material of tires is mod-
eled by the laminated composite shell element, and the distributed parameter
LuGre tire friction model is utilized to allow for an accurate prediction of the
shear contact stress distribution over the contact patch under various vehicle
maneuvering scenarios [?].

For easy incorporation in and interoperability with third-party applications,
Chrono::Vehicle is provided as a middleware library. System and subsystem
templates are implemented through polymorphic classes and thus the library
is extensible through C++ inheritance, allowing definition of new subsystems
or new templates for existing subsystems. Systems and subsystems are defined
with a three-layered C++ class hierarchy: (i) base abstract class for type (e.g.,
ChSuspension); (ii) derived, still abstract, class for specific template (e.g., ChDou-
bleWishbone); and (iii) concrete class that particularizes the template for a
given vehicle (e.g., HMMWV DoubleWishboneFront). We provide two different types
for the concrete classes that specify a template. The first one, providing maxi-
mum flexibility, is through user-defined classes which implement all virtual func-
tions imposed by the corresponding template base class. While not part of the
Chrono::Vehicle library itself, several examples of this approach are provided with
the package. A more convenient approach, allowing for fast experimentation and
parametric studies, is offered through a set of concrete template classes (part of
the Chrono::Vehicle library) that specify the subsystem for a particular vehicle
through specification data files in the JSON format [?].

Visualization of vehicle systems is provided both for run-time, interactive
simulation (through the Chrono built-in Irrlicht visualization support) and for
high-quality post-processing rendering (using for example the POV-Ray ray-
tracing package, see Fig. 9).

Currently only wheeled vehicles are supported, but work is underway for
extending Chrono::Vehicle to include templates appropriate for modeling tracked
vehicles.

5.2 Chrono::Granular

To facilitate the accurate modeling of particulate or granular materials used in
Chrono simulations, a module called Chrono::Granular is available. This module
provides pre-processing and post-processing tools specific to granular materials,

Fig. 9: A Chrono::Vehicle simulation of a HMMWV vehicle operating on granular
terrain composed of over 150 000 bodies. Each granular particle is an ellipsoid
that can be circumscribed in a sphere with a radius of 2 cm. The solver uses
the complementarity form of contact with a time step of 0.001 seconds and 40
APGD iterations per step. The simulation took approximately 3.2 computation
hours per second on a 3 GHz Intel Xeon E5-2690v2 processor using 20 cores.

as well as C++ templates for a variety of material tests, including the standard
geomechanics tests (e.g., direct shear, triaxial) to determine elastic and plastic
properties of the bulk granular material, as well as standard industrial processes
(e.g., hopper flow, conveyor transport). Chrono::Granular can be used on its own
or in conjunction with other modules, such as Chrono::Vehicle, e.g., in scenarios
where vehicle-ground interactions are critical and where the ground is a granular
material, such as sand, soil, or gravel.

The pre-processing tools provided by Chrono::Granular include the specifi-
cation of granular materials with either user-definable or preset particle size
and shape distributions, e.g., for ASTM standard graded sand; and various bulk
geometries, e.g., cubical for the direct shear box test or cylindrical for the stan-
dard triaxial test. Once specified, granular material specimens can be subjected
to the standard tests provided by the Chrono::Granular templates, to determine
bulk elastic and plastic properties, such as Young’s modulus, Poisson’s ratio,
and the friction and dilation angles of the bulk granular material. These bulk
material properties for the simulated granular material are extracted from the
simulations by the templates, and they can be compared to the bulk physical
properties of the granular material that the user wishes to model for validation
before subsequent Chrono simulations are run.

In addition to the determination of macro-scale or bulk granular material
properties, Chrono::Granular also provides post-processing tools for the deter-
mination and visualization of micro-scale or local granular material properties,

including particle trajectories, inter-particle force chains, and the local stress
distribution [?], defined as σij =

(∑
c f

c
i l
c
j

)
/Vσ, where σij is the average local

stress tensor over a representative volume including at least two particles, f ci is
the contact force vector, and lcj is the branch vector connecting the centers of
contacting pairs, as shown in Fig. 10. The sum is over the contacts between the
particles within the representative volume, and Vσ is the volume of the region
containing those particles.

Fig. 10: An inter-particle contact c between two particles within a granular ma-
terial, with the branch vector lci and the contact force vector f ci shown.

6 Chrono Validation Studies

Validation against ADAMS. To validate basic modeling elements, a series of
systems were created within Chrono. Multiple models were generated to test
different aspects of each modeling element examined: revolute, spherical, uni-
versal, prismatic, and cylindrical joints; distance and revolute-spherical joints;
translational and rotational spring-dampers; and translational actuators. Since
the majority of the basic test systems did not have closed form analytical solu-
tions, equivalent models were constructed and solved within MSC.ADAMS. The
simulation results between Chrono and ADAMS were compared for each model
to ensure close agreement between the two programs. For all of the test models
examined, the results between the simulation programs were in close alignment
as described in [?]. As an example, consider one of the unit tests for the univer-
sal joint. In this test, a pendulum body, initially at rest and aligned along the
x = y line, is connected to the ground through a universal joint; the initial direc-
tions of the universal joint’s cross are [1/2,−1/2,

√
2/2] and [−1/2, 1/2,

√
2/2].

The comparison plots in Fig. 11 show that the maximum difference in angular
acceleration between Chrono and ADAMS is on the order of 0.5% of the peak
angular acceleration seen in the system. Although not shown, the results be-
tween Chrono and ADAMS would converge further if the solver tolerances were
tightened beyond the settings used in this study.

Fig. 11: Comparison of the pendulum angular acceleration in the global frame
between CHRONO and ADAMS for the universal joint test system 3

Validation against experimental data. The DEM-P and DEM-C contact ap-
proaches were validated against several fundamental terramechanics experiments.
The first validation test, shown in Fig. 12a, used an aluminum rig designed and
fabricated to measure the gravity-induced mass flow rate through a gap of a
specified amount of granular material. The flow of the 500 micron diameter glass
spheres was simulated for each gap size used in the lab experiments. Fig. 12b
shows the simulation results plotted next to experimental measurements (weight
as a function of time). Good statistical correlation was observed between simu-
lation and experimental results for both DEM-P and DEM-C.

A second validation test, shown in Fig. 13, was run for an impact problem
in a series of simulations reported in [?]. A relation of the form

d =
0.14

µ

(
ρb
ρg

)1/2

D
2/3
b H1/3 (29)

has been empirically established [?], where d is the depth of penetration, h is the
height from which a ball of density ρb and diameter Db is dropped, H = d+h is
the total drop distance, and ρg is the density of the granular material. Finally,
µ was the friction coefficient in the granular material obtained from an angle
of repose experiment as µ = tan(θr), where θr is the repose angle. In this test,
the emergent behavior, i.e. the empirical equation above, is the result of the
coordinated motion of 0.5 million bodies. Again, Chrono provided good statistical
correlation between simulation and experimental results for both DEM-P and
DEM-C, shown in Fig. 14.

Lastly, to verify that the Chrono DEM-P contact model with true tangential
displacement history does indeed accurately model the micro-scale physics and
emergent macro-scale properties of a simple granular material, we have used

(a) (b)

Fig. 12: Schematic of mass flow rate validation experiment in the open configu-
ration (left). Weight of collected granular material vs. time for 2.0 mm gap size
(right).

the templates of Chrono::Granular to simulate physical tests typical of the field
of geomechanics; i.e., direct shear tests on a mono-disperse material, shown in
Fig. 15. This third validation against experimental data, shown in Fig. 16, shows
shear versus displacement curves obtained from both experimental [?] (top) and
Chrono-simulated (bottom) direct shear tests, performed under constant normal
stresses of 3.1, 6.4, 12.5, and 24.2 kPa, on 5, 000 uniform glass beads. The inside
dimensions of the shear box were 12 cm in length by 12 cm in width, and the
height of the granular material specimen was approximately 6 cm. In both the
experimental and simulated direct shear tests, the glass spheres had a uniform
diameter of 6 mm, and the random packing of 5, 000 spheres was initially ob-
tained by a “rainfall” method, after which the spheres were compacted by the
confining normal stress without adjusting the inter-particle friction coefficient.
The DEM-P simulations were performed in Chrono using a Hertzian normal con-
tact force model and true tangential contact displacement history with Coulomb
friction. The material properties of the spheres in the simulations were taken to
be those corresponding to glass [?], for which the density is 2, 550 kg/m3, the
inter-particle friction coefficient is µ = 0.18, Poisson’s ratio is ν = 0.22, and the
elastic modulus is E = 4×1010 Pa, except that the elastic modulus was reduced
by several orders of magnitude, to E = 4× 107 Pa, to ensure a stable simulation
with a reasonable time integration step-size of h = 10−5 s. The shear speed was
1 mm/s.

From Fig. 16, one can calculate the friction angle φ for the bulk granular ma-
terial, which is the inverse tangent of the ratio of shear stress to normal stress
at the initiation of yield (the peak friction angle φp) and post yield (the resid-
ual friction angle φr) during the direct shear test [?]. Specifically, for constant
normal stresses of 3.1, 6.4, 12.5, and 24.2 kPa, the peak friction angles φp are

Fig. 13: Snapshot of the instant of deepest penetration from each impact simu-
lation.

(a) (b)

Fig. 14: Penetration depth vs. scaled total drop distance for the DEM-P (left)
and DEM-C (right) contact methods.

Fig. 15: Direct shear test simulations performed on 5, 000 randomly packed uni-
form glass beads using Chrono, in initial (left) and final (right) positions.

Fig. 16: Direct shear test results for 5, 000 randomly packed uniform glass beads,
obtained by experiment [?] (top) and DEM-P simulations using Chrono (bottom),
under constant normal stresses of 3.1, 6.4, 12.5, and 24.2 kPa.

approximately 33, 32, 29, and 28 deg., respectively, for both the experimental
and Chrono-simulated direct shear tests.

7 Conclusions and Future Work

Chrono is an ongoing open source software development project aimed at es-
tablishing a dynamics engine that is experimentally validated and which draws
on parallel computing and a broad spectrum of modeling techniques to solve
large problems of practical relevance. Chrono is used in a spectrum of applica-
tions in additive manufacturing, rheology, ground-vehicle interaction, soft-matter
physics, and geomechanics. Its most salient attribute is the ability to solve multi-
disciplinary problems that require the solution of coupled differential algebraic
equations, ordinary differential equations, partial differential equations and vari-
ational inequalities. Chrono has been validated for basic granular dynamics prob-
lems, fluid-solid interaction problems, and efforts are underway to validate it for
ground-vehicle mobility problems. Chrono is distributed with several toolkits,
such as Chrono::Vehicle and Chrono::Granular, which provide a low entry point
for individuals who are interested in using the tool without understanding its
implementation. For a focused application area, the toolkits attempt to encap-
sulate best-practice solutions through ready-to-use templates that can reduce
modeling time and improve numerical solution robustness. Chrono is available
on GitHub [?] and can be used under a very permissive license. More than 150
animations of Chrono simulations are available online at [?,?]. Looking ahead, ef-
fort is underway to improve Chrono in terms of (i) modeling prowess by building
up the support for fluid dynamics and nonlinear finite element analysis; (ii) time
to solution by leveraging parallel computing; and (iii) solution accuracy and ro-
bustness by embedding more refined numerical methods for solving differential
equations and variational problems.

Acknowledgments

This work has been possible owing to US Army Research Office Rapid Innova-
tion Funding grant W56HZV-14-C-0254, US National Science Foundation grant
GOALI-CMMI 1362583, and US Army Research Office grant W911NF-12-1-
0395. Milad Rakhsha is gratefully acknowledged for his help in the preparation
of this manuscript.

References

