

Chrono::FEA

Validation

ANCF Cable

ANCF cable elements validated against published literature (see unit test test_ANCFCable.cpp)

*Chrono's implementation has been verified against: Gerstmayr and Shabana, 2006, "Analysis of thin beams and cables using the absolute nodal coordinate formulation", Nonlinear Dynamics 45: 109–130

ANCF Beam

ANCF cable elements validated against published literature (see unit test utest_ANCFBeam.cpp)

- H = 0.5m; W = 0.1m; L = 2.0m; 4 ANCF finite elements
 - E = 2.07e11 Pa; Poisson ratio = 0.3; k1,k2 Timoshenko coefficients
 - Force = $-5e5 \ 0.5^3 \ N$
 - Results match up to numerical precision with published in the literature: "Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: Application to static and linearized dynamic examples", Journal of Computational and Nonlinear Dynamics, April 2013, Vol. 8/021004.
 - Verified for small and large deformation

ANCF shell

Number of elements

Dimensions	E (MPa)	G (MPa)	Density	Vertical Force	Simulation type	Ansys element	Converged disp
1mx1mx0.01 m	210	80.8	500 kg/m ³	-50N	Dynamic	Shell181 (EAS)	-0.649m

ANCF shell

Orthotropic and Composite

Dimensi ons	Ex (MPa)	G (MPa)	Ey=Ez (MPa)	Density	Vertical Force	Simulatio n type	Number of layers	Thickness of each layer	Fiber angle	Converged disp.
1mx1mx 0.01m	200	38.5	100	500 kg/m ³	-10N	Dynamic	2	0.005m	20 degrees	-0.80207m

8-noded brick element

- **Classical tri-linear element**
- Implements Enhanced Assumed Strain formulation to alleaviate locking

Isotropic and MR

test_EASBrickMooneyR_Grav.cpp

test EASBrickIso.cpp

• Constitutive equations: Linear isotropic and Mooney-Rivlin

Dimensions	C ₁₀ (kPa)	C ₀₁ (kPa)	Vertical Force	Simulation type	Converged disp.
1mx1mx 0.1m	50	10	-50N	Dynamic	-0.5762 m

Brick 9: Capped Drucker-Prager –Punch Test

Soil Material Properties

 $\sigma_{yield} = 210926Pa$ $\beta = 51.7848^{\circ}$ $\phi = 51.7848^{\circ}$ R = 0.5 $\rho = 2149 \frac{kg}{m^3}$ E = 54.1MPav = 0.293021

> Chrono verification parameters

- Applied force : $-27000\sin(\pi t)$
- Contact stiffness : 165000 N/m
- Contact detection threshold : 0.009m
- Element number : 12*12*8
- Soil box dimension : 0.48m*0.48*0.6m
- Rigid punch dimension : 0.2m*0.2m*0.1m
- Bottom node fixed

Corotational Euler-Bernoulli beam: Princeton benchmark

Kinematically exact Reissner shell element

Clamped half cylinder with sliding constraints at the sides

Large bending in a rolled band

Comparison with results in literature and with analytical solutions

